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Abstract
Restless bandit problems are instances of non-
stationary multi-armed bandits. There are plenty
of results from the optimization perspective,
which aims to efficiently find a near-optimal pol-
icy when system parameters are known, but the
learning perspective where the parameters are
unknown is rarely investigated. In this paper,
we analyze the performance of Thompson sam-
pling in restless bandits with unknown parameters.
We consider a general policy map to define our
competitor and prove an Õ(

√
T ) Bayesian regret

bound. Our competitor is flexible enough to repre-
sent various benchmarks including the best fixed
action policy, the optimal policy, the Whittle in-
dex policy, or the myopic policy. The empirical
results also support our theoretical findings.

1. Introduction
Restless bandits (Whittle, 1988) are a variant of multi-armed
bandit (MAB) problems (Robbins, 1952). Unlike the clas-
sical MABs, the arms have non-stationary reward distribu-
tions. Specifically, we will focus on the class of restless
bandits whose arms change their states based on Markov
chains. Restless bandits are also distinguished from rested
bandits where only the active arms evolve and the passive
arms remain frozen. We will assume that each arm changes
according to two different Markov chains depending on
whether it is played or not. Because of their extra complex-
ity, restless bandits can model more practical problems such
as dynamic channel access (Liu et al., 2011; 2013) or online
recommendation system (Meshram et al., 2017).

Due to the arms’ non-stationary nature, playing the same set
of arms for every round usually does not produce the optimal
performance. This makes the optimal policy highly non-
trivial, and Papadimitriou & Tsitsiklis (1999) show that it
is generally PSPACE hard to identify the optimal policy for
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restless bandits. As a consequence, many researchers have
been devoted to find an efficient way to approximate the
optimal policy (Liu & Zhao, 2010; Meshram et al., 2018).
This line of work primarily focuses on the optimization
perspective in that the system parameters are already known.

Since the true system parameters are unavailable in many
cases, the learning perspective for the restless bandits is
necessary. Due to the learner’s additional uncertainty, how-
ever, analyzing a learning algorithm in restless bandits is
significantly challenging. Liu et al. (2011; 2013) and Tekin
& Liu (2012) prove O(log T ) bounds for confidence bound
based algorithms, but their competitor always selects a fixed
set of actions, which is known to be weak. Dai et al. (2011;
2014) show O(log T ) bound against the optimal policy, but
their assumptions on the underlying model is very limited.
Ortner et al. (2012) prove Õ(

√
T ) bound in the general

restless bandits, but their algorithm is infeasible in general.

On a different path, Osband et al. (2013) study Thompson
sampling in the fully observable Markov decision process
(MDP) and show the Bayesian regret bound of Õ(

√
T ). Un-

fortunately, this result is not applicable in our setting as ours
is partially observable due to bandit feedback. Following
Ortner et al. (2012), it is possible to transform our setting to
the fully observable case, but then we end up having expo-
nentially many states, which restrict the practical utility of
existing results.

In this work, we analyze Thompson sampling in restless ban-
dits where the system resets every episode of a fixed length
and the rewards are binary. We directly tackle the partial
observability and achieve a meaningful regret bound, which
also matches the result in the classical MAB. We are not
the first to analyze Thompson sampling in restless bandits,
and Meshram et al. (2016) study this type of algorithm as
well, but their regret analysis remains in the one-armed-case
with a fixed reward of not pulling the arm. They explicitly
mention that regret analysis of Thompson sampling in the
multi-armed case is an interesting open question.

2. Problem Setting
We begin by introducing our setting. There are K arms, and
the algorithm selects N arms every round. We denote the
learner’s action at time t by a binary vector At ∈ {0, 1}K
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where ||At||1 = N . We call the selected arms as active
and the rest as passive. We assume each arm k has binary
states, {0, 1}, which evolve as a Markov chain with transi-
tion matrix either P active

k or P passive
k , depending on whether

the learner pulled the arm or not.

At round t, pulling an arm k incurs a binary reward Xt,k,
which is the arm’s current state. As we are in the bandit
setting, the learner only observes the rewards of active arms,
which we denote by Xt,At

, and does not observe the passive
arms’ rewards nor their states. This feature makes our set-
ting to be a partially observable Markov decision process, or
POMDP. We denote the history of the learner’s actions and
rewards up to time t byHt = (A1, X1,A1

, · · · , At, Xt,At
).

We assume the system resets every episode of length L,
which is also known to the learner. This means that at
the beginning of each episode, the states of the arms are
drawn from an initial distribution. The entire time horizon is
denoted by T , and for simplicity, we assume it is a multiple
of L, or T = mL.

2.1. Bayesian Regret and Competitor Policy

Let θ ∈ Θ denote the entire parameters of the system. It
includes transition matrices P active and P passive, and an initial
distribution of each arm’s state. The learner does not have
the knowledge of these parameters at the beginning.

In order to define a regret, we need a competitor policy, or a
benchmark. We first define a class of deterministic policies
and policy mappings.

Definition 1. A deterministic policy π takes time index and
history (t,Ht−1) as an input and outputs a fixed action
At = π(t,Ht−1). A deterministic policy mapping µ takes
system parameters θ as an input and outputs a deterministic
policy π = µ(θ).

We fix a deterministic policy mapping µ and let our algo-
rithm compete against a deterministic policy π? = µ(θ?),
where θ? represents the true system parameters, which are
unknown to the learner.

We keep our competitor policy abstract mainly because we
are in the non-stationary setting. Unlike the classical (sta-
tionary) MABs, pulling the same set of arms with the largest
expected rewards is not necessarily optimal. Moreover, it is
in general PSPACE hard to compute the optimal policy when
θ? is given. Regarding these statements, we refer the readers
to the book by Gittins et al. (1989). As a consequence, re-
searchers have identified conditions that the myopic policy
is optimal (Ahmad et al., 2009) or proven that an efficient
index-based policy has a reasonable performance against
the optimal policy (Liu & Zhao, 2010).

We observe that most of proposed policies including the
optimal policy, the myopic policy, or the index-based pol-

icy are deterministic. Therefore, researchers can plug in
whatever competitor policy of their choice, and our regret
bound will apply as long as the chosen policy mapping is
deterministic.

Before defining the regret, we introduce a value function

V θπ,i(H) = Eθ,π[

L∑
j=i

Aj ·Xj |H].

This is the expected reward of running a policy π from round
i to L where the system parameter is θ and the starting
history is H. Note that the competitor policy π? obtains
V θ

?

π?,1(∅) rewards per episode in expectation. Thus, the
regret can be written as

R(T ; θ?) = mV θ
?

π?,1(∅)− Eθ?
T∑
t=1

At ·Xt. (1)

We are particularly interested in bounding the following
Bayesian regret,

BR(T ) = Eθ?∼QR(T ; θ?),

where Q is a prior distribution over the set of system param-
eters Θ. The prior is assumed to be known to the learner.

3. Algorithm
Our algorithm is an instance of Thompson sampling, first
proposed by Thompson (1933). At the beginning of episode
l, the algorithm draws system parameters θl from posterior
and plays πl = µ(θl) throughout the episode. Once an
episode is over, it updates posterior based on additional
observations. Algorithm 1 describes the steps.

We want to point out that the historyH fulfills two different
purposes. One is to update posterior Ql, and the other is
as an input to a policy π. For the latter, however, we don’t
need the entire history as the arms reset every episode. That
is why we setH0 = ∅ (step 6) and feedHt−1 to πl (step 8).
Furthermore, as we assume that the arms evolve based on
Markov chains, the historyHt−1 can be summarized as

(r1, n1, · · · , rK , nK), (2)

which means that the arm k is played nk rounds ago and rk
is the observed reward in that round. If an arm k is never
played in the episode, then nk becomes t and rk becomes
the expected reward from the initial distribution.

4. Regret Bound
In this section, we prove that the Bayesian regret of Algo-
rithm 1 is at most Õ(

√
T ). The following lemma decom-

poses the regret.
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Algorithm 1 Thompson Sampling in Restless Bandits
1: Input prior Q, episode length L, policy mapping µ
2: Initialize posterior Q1 = Q, historyH = ∅
3: for episodes l = 1, · · · ,m do
4: Draw parameters θl ∼ Ql
5: Compute the policy πl = µ(θl)
6: SetH0 = ∅
7: for t = 1, · · · , L do
8: Select N active arms At = πl(t,Ht−1)
9: Observe rewards Xt,At

and updateHt
10: end for
11: AppendHL toH
12: Update posterior distribution Ql+1 usingH
13: end for

Lemma 2. The Bayesian regret of Algorithm 1 can be de-
composed as below

BR(T ) = Eθ?∼Q
m∑
l=1

Eθl∼Ql
[V θ

?

π?,1(∅)− V θ
?

πl,1
(∅)]

= Eθ?∼Q
m∑
l=1

Eθl∼Ql
[V θlπl,1

(∅)− V θ
?

πl,1
(∅)].

Proof. The first line is a simple rewriting of (1) based on Al-
gorithm 1. Observe that given the history up to time (l−1)L,
the distributions of θ? and θl are same as Ql. Furthermore,
the mapping from θ to V θµ(θ),1(∅) is deterministic. Using
the observation by Russo & Van Roy (2014) and the tower
rule, we get

Eθ?∼Q
m∑
l=1

Eθl∼Ql
V θ

?

π?,1(∅) = Eθ?∼Q
m∑
l=1

Eθl∼Ql
V θlπl,1

(∅),

which leads to the second line of the lemma.

Next, we define the Bellman operator

T θπ V (Ht−1) = Eθ,π[At ·Xt + V (Ht)|Ht−1].

It is easy to check that V θπ,i = T θπ V θπ,i+1. The next lemma
further decomposes the regret.
Lemma 3. Fix θ? and θl, and letH0 = ∅. Then we have

V θlπl,1
(H0)− V θ

?

πl,1
(H0)

= Eθ?,πl

L∑
t=1

(T θlπl
− T θ

?

πl
)V θlπl,t+1(Ht−1).

Proof. Using the relation V θπ,i = T θπ V θπ,i+1, we may write

V θlπl,1
(H0)− V θ

?

πl,1
(H0)

= (T θlπl
V θlπl,2

− T θ
?

πl
V θ

?

πl,2
)(H0)

= (T θlπl
− T θ

?

πl
)V θlπl,2

(H0) + T θ
?

πl
(V θlπl,2

− V θ
?

πl,2
)(H0).

The second term can be written as

Eθ?,πl
[(V θlπl,2

− V θ
?

πl,2
)(H1)|H0],

and we can repeat this L times to obtain the equation.

We also record the following technical result.

Lemma 4. Let ai, bi ∈ [0, 1] for i ∈ [k] and |ai− bi| ≤ ∆i.
Then we can show∑
x∈{0,1}k

|
∏
i

axi
i (1− ai)1−xi −

∏
i

bxi
i (1− bi)1−xi |

≤ 2

k∑
j=1

∆j .

(3)

Proof. Fix x. For simplicity, let ci = axi
i (1− ai)1−xi and

di = bxi
i (1 − bi)1−xi . Since xi is either 0 or 1, we have

|ci − di| = |ai − bi| ≤ ∆i. Then we write

|
k∏
i=1

ci −
k∏
i=1

di| ≤ (

k−1∏
i=1

ci)|ck − dk|+ |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ (

k−1∏
i=1

ci)∆k + |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ · · ·

≤
k∑
j=1

(

j−1∏
i=1

ci)∆j(

k∏
i=j+1

di).

Summing the last term over x finishes the argument.

Now we are ready to prove our main theorem.

Theorem 5. (Thompson Sampling, Regret Bound) The
Bayesian regret of Algorithm 1 satisfies the following bound

BR(T ) = O(
√
KL3N3T log T ).

Remark. If the system is classical stationary MABs, then it
corresponds to the case L = 1, N = 1, and our result repro-
duces the result ofO(

√
KT log T ) (Lattimore & Szepesvári,

2018, Chp. 36). Furthermore, when N > K
2 , we can think

of the problem as choosing the passive arms, and the smaller
bound with N replaced by K −N would apply.

Proof. We fix an episode l and analyze the regret in this
episode. Let tl = (l − 1)L so that the episode starts at time
tl + 1. Define

Nl(k, r, n) =

tl∑
t=1

1{At,k = 1, rk = r, nk = n}.
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It counts the number of rounds where the arm k was chosen
by the learner with history rk = r and nk = n (see (2) for
definition). Note that

k ∈ [K], r ∈ {0, 1, ρ(k)}, and n ∈ [L],

where ρ(k) is the initial success rate of arm k. This implies
that there are 3KL possible tuples of (k, r, n).

Let ωθ(k, r, n) denote the conditional probability ofXk = 1
given a history (r, n) and system parameters θ. Also let
ω̂(k, r, n) denote the empirical mean of this quantity (using
Nl(k, r, n) past observations and set the estimate to 0 if
Nl(k, r, n) = 0). Then define

Θl = {θ | ∀k, r, n, |(ω̂−ωθ)(k, r, n)| <

√
2 log(1/δ)

1 ∨Nl(k, r, n)
}.

Since ω̂(k, r, n) isHtl -measurable, so is this set. Using the
Hoeffding inequality, one can show

P(θ? /∈ Θl) = P(θl /∈ Θl) ≤ 3δKL.

We now turn our attention to the following Bellman operator

T θπl
V θlπl,t

(Ht−1) = Eθ,πl
[Atl+t ·Xtl+t + V θlπl,t

(Ht)|Ht−1].

Since πl is deterministic, so is Atl+t given Ht−1 and πl.
Let (k1, . . . , kN ) be the active arms at time tl + t and write
ωθ(ki, rki , nki) = ωθ,i. Then we can rewrite

T θπl
V θlπl,t

(Ht−1)

=

N∑
i=1

ωθ,i +
∑

x∈{0,1}N
P θxV

θl
πl,t

(Ht−1 ∪ (Atl+t, x)),

(4)

where P θx =
∏N
i=1 ω

xi

θ,i(1−ωθ,i)1−xi . Under the event that
θ?, θl ∈ Θl, we have

|ωθl,i − ωθ?,i| < 1 ∧

√
8 log(1/δ)

1 ∨Nl(ki, rki , nki)
=: ∆i(tl + t),

where the dependence on tl + t comes from the mapping
from i to ki. Lemma 4 provides

∑
x∈{0,1}N

|P θlx − P θ
?

x | ≤ 2

N∑
i=1

∆i(tl + t). (5)

From (4), (5), and the fact that |V θπ,t| ≤ LN , we obtain
givenHt−1 and the event θ?, θl ∈ Θl,

|(T θ
?

πl
− T θlπl

)V θlπl,t
(Ht−1)| ≤ (2LN + 1)

N∑
i=1

∆i(tl + t)

≤ 3LN

N∑
i=1

∆i(tl + t).

The above inequality holds whenever θ?, θl ∈ Θl. When
θ? /∈ Θl or θl /∈ Θl, which happens with probability
less than 6δKL, then we have a trivial bound |V θlπl,1

(∅) −
V θ

?

πl,1
(∅)| ≤ LN . Therefore, we can deduce

|V θlπl,1
(∅)− V θ

?

πl,1
(∅)| ≤ 6δKL2N

+ 3LN1(El)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t),

where El denotes the event θ?, θl ∈ Θl.

Combining this with Lemma 2 and Lemma 3, we get

BR(T ) ≤ 6δmKL2N

+ Eθ?∼Q3LN

m∑
l=1

1(El)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t).
(6)

We further analyze the summation to finish the argument.
Recall that for this summation, we have θ?, θl ∈ Θl. We
shorten Nl(ki, rki , nki) to Nl for simplicity. We have

m∑
l=1

L∑
t=1

N∑
i=1

∆i(tl + t)

≤
∑

1{Nl ≤ L}+ ∆i1{Nl > L}

≤ 6KL2 +
∑

1{Nl > L}

√
8 log(1/δ)

Nl
,

(7)

where the second inequality holds because there are 3KL
possible tuples of (k, r, n) and a tuple can contribute at most
2L to the first summation.

We can bound the second term as follows

m∑
l=1

L∑
t=1

N∑
i=1

1{Nl > L}
√

1

Nl

=

m∑
l=1

∑
(k,r,n)

1{Nl > L}(Nl+1 −Nl)
√

1

Nl

≤
m∑
l=1

∑
(k,r,n)

(Nl+1 −Nl)

√
2

Nl+1

≤
√

8
∑

(k,r,n)

√
Nm+1(k, r, n)

≤
√

24KLNT.

(8)

For the first inequality, we use Nl+1 ≤ Nl +L ≤ 2Nl. The
second inequality holds due to the integral trick. Finally,
the last inequality holds by the Cauchy-Schwartz inequality
along with the fact that

∑
(k,r,n)Nm+1(k, r, n) = NT .

Combining (6), (7), and (8), we get

BR(T ) = O(δKNLT+KL3N+
√
KL3N3T log(1/δ)).
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Figure 1. The Gilbert-Elliott channel model

SinceNT is a trivial upper bound ofBR(T ), we may ignore
the KL3N term. Setting δ = 1

T completes the proof.

5. Experiments
We empirically examine our model in a practical case.

5.1. Model Design

We particularly investigate the Gilbert-Elliott channel model,
which is studied by Liu & Zhao (2010) in a restless bandit
perspective. This model can be broadly used in communi-
cation systems such as cognitive radio networks, downlink
scheduling in cellular systems, opportunistic transmission
over fading channels, and resource-constrained jamming
and anti-jamming.

Each arm k has two parameters pk01 and pk11, which deter-
mine the transition matrix. We assume P active = P passive and
each arm’s transition matrix is independent on the learner’s
action. There are only two states, good and bad, and the
reward of playing an arm is 1 if its state is good and 0 oth-
erwise. We assume the initial distribution of arm k follows
the stationary distribution. In other words, its initial state is
good with probability ωk =

pk01
pk01+1−pk11

.

We fixK = 8,N = 3, L = 50, andm = 30. We use Monte
Carlo simulation with size 100 to approximate expectations.
As we assume K = 8 and each arm has two parameters,
there are 16 parameters. For these, we use the uniform prior
over the support {0.1, 0.2, · · · , 0.9}.

5.2. Competitors

As mentioned earlier, one distinguishable strength of our
result is that various policy mappings can be used as a
competitor. Here we test three different policies: the best
fixed arm policy, the myopic policy, and the Whittle index
policy. We emphasize again that these competitor policies
know the system parameters while our algorithm does not.

The best fixed arm policy computes the stationary distribu-
tion ωk =

pk01
pk01+1−pk11

for all k and pulls the arms with topN
values. The myopic policy keeps updating the belief ωk(t)

Figure 2. Bayesian regret of Thompson sampling versus episode
(left) and its log-log plot (right)

for the arm k being in a good state and pulls the top N arms.
Finally, the Whittle index policy computes the Whittle index
of each arm and uses it to rank the arms. The Whittle index
is proposed by Whittle (1988), and its computation in this
particular setting can be found in Liu & Zhao (2010).

One observation is that these three policies are reduced to
the best fixed arm policy in the stationary case. However,
the first two policies are known to be sub-optimal in general
(Gittins et al., 1989). Liu & Zhao (2010) justify both the-
oretically and empirically the performance of the Whittle
index policy on the Gilbert-Elliott channel model.

5.3. Results

The value functions V θπ,1(∅) for the best fixed arm pol-
icy, the myopic policy, and the Whittle index policy are
105.4, 110.3, and 111.4, respectively. If a competitor pol-
icy has a weak performance, then Thompson sampling also
uses this weak policy mapping to get a policy πl for the
episode l. This implies that the regret does not necessar-
ily become negative when the competitor policy is weak.
Figure 2 shows the trend of regret as a function of episode
indices. Regardless of the choice of policy mapping, the
regret is sub-linear, and the slope of log-log plot is less than
0.5, which agrees with Theorem 5.
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