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Abstract
Connector insertion and many other tasks com-
monly found in modern manufacturing settings
involve complex contact dynamics and friction.
Since it is difficult to capture related physical ef-
fects with first-order modeling, traditional control
methodologies often result in brittle and inaccu-
rate controllers, which have to be manually tuned.
Reinforcement learning (RL) methods have been
demonstrated to be capable of learning controllers
in such environments from autonomous interac-
tion with the environment, but running RL algo-
rithms in the real world poses sample efficiency
and safety challenges. Moreover, in practical real-
world settings we cannot assume access to perfect
state information or dense reward signals. In this
paper, we consider a variety of difficult industrial
insertion tasks with visual inputs and different
natural reward specifications, namely sparse re-
wards and goal images. We show that methods
that combine RL with prior information, such as
classical controllers or demonstrations , can solve
these tasks directly by real-world interaction.

1. Electric Connector Plug Insertion Tasks
In this work, we empirically evaluate learning methods on a
set of electric connector assembly tasks, pictured in Fig. 1.
Connector plug insertions are difficult for two reasons. First,
the robot must be very precise in lining up the plug with
its socket. As we show in our experiments, errors as small
as ±1mm can lead to consistent failure. Second, there is
significant friction when the connector plug touches the
socket, and the robot must learn to apply sufficient force
in order to insert the plug. Image sequences of successful
insertions are shown in Fig. 2, where it is also possible to
see details of the gripper setup that we used to ensure a fully
automated training process. In our experiments, we use a 7
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degrees of freedom Sawyer robot with end-effector control,
meaning that the action signal ut can be interpreted as the
relative end-effector movement in Cartesian coordinates.

To comprehensively evaluate connector assembly tasks, we
repeat our experiments on a variety of connectors. Each
connector offers a different challenge in terms of required
precision and force to overcome friction. We chose to bench-
mark the controllers performance on the insertion of a USB
connector, a U-Sub connector, and a waterproof Model-E
connector manufactured by MISUMI. All the explored use
cases were part of the IROS 2017 Robotic Grasping and
Manipulation Competition (Falco et al., 2018), included as
part of a task board developed by NIST to benchmark the
performance of assembly robots.

1.1. Adapters

In the following we describe the used adapters, USB, D-
Sub, and Model-E. The observed difficulty of the insertion
increases in that order.

1.1.1. USB

The USB connector is a ubiquitous, widely-used connector
and offers a challenging insertion task. Because the adapter
becomes smoother and therefore easier to insert over time
due to wear and tear, we periodically replace the adapter.
Of the three tested adapters, the USB adapter is the easiest.

Figure 1. We train an agent directly in the real world to solve
connector insertion tasks that involve contacts and tight tolerances
from convenient reward signals such as pixel distance to a goal
image or a sparse electrical signal.
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Figure 2. The three image sequences show rollouts from learned
policies that successfully complete the insertion tasks.

1.1.2. D-SUB

Inserting this adapter requires aligning several pins cor-
rectly, and is therefore more sensitive than inserting the
USB adapter. It also requires more downward force due to
a tighter fit.

1.1.3. MODEL-E

This adapter is the most difficult of the three tested connec-
tors as it contains several edges and grooves to align and
requires significant downward force to successfully insert
the part.

1.2. Experimental Settings

We consider three settings in our experiments in order to
evaluate how plausible it is to solve these tasks with more
convenient state representations and reward functions and
to evaluate the performance of different algorithms changes
as the setting is modified.

1.2.1. VISUAL

In this experiment, we evaluate whether the RL algorithms
can learn to perform the connector assembly tasks from
vision without having access to state information. The state
provided to the learned policy is a 32× 32 grayscale image,
such as shown in Fig. 4. For goal specification, we use
a goal image, avoiding the need for state information to
compute rewards. The reward is the pixelwise L1 distance
to the given goal image. Being able to learn from such a
setup is compelling as it does not require any extra state
estimation and many tasks can be specified easily by a goal
image.

1.2.2. ELECTRICAL (SPARSE)

In this experiment, the reward is obtained by directly mea-
suring whether the connection is alive and transmitting:

r =

{
1, if insertion signal detected
0, else.

(1)

This is the exact true reward for the task of connecting a
cable, and can be naturally obtained in many manufacturing
systems. As state, the robot is given the Cartesian coordi-
nates of the end-effector xt and the vertical force fz that is
acting on the end-effector. As we could only automatically
detect the USB connection thus far, we only include the
USB adapter for the sparse experiments.

1.2.3. DENSE

In this experiment, the robot receives a manually shaped
reward based on the distance to the target. We use the reward
function

rt = −α · ‖xt − x∗‖1 −
β

(‖xt − x∗‖2 + ε)
− ϕ · fz, (2)

where 0 < ε� 1. The hyperparameters are set to α = 100,
β = 0.002, and ϕ = 0.1. When an insertion is indicated
through a distance measurement, the sign of the force term
flips, so that ϕ = −0.1 when the connector is inserted. This
rewards the agent for pressing down after an insertion and
showed to improve the learning process.

2. Methods
To solve the connector insertion tasks, we consider and
evaluate a variety of reinforcement learning algorithms.

2.1. Preliminaries

In a Markov decision process (MDP), an agent at every
time step is at state st ∈ S, takes actions ut ∈ U , receives
a reward rt ∈ R, and the state evolves according to envi-
ronment transition dynamics p(st+1|st, ut). The goal of
reinforcement learning is to choose actions ut ∼ π(ut|st)
to maximize the expected returns E[

∑H
t=0 γ

trt] where H is
the horizon and γ is a discount factor. The policy π(ut|st)
is often chosen to be an expressive parametric function ap-
proximator, such as a neural network, as we use in this
work.

2.2. Efficient Off-Policy Reinforcement Learning

One class of RL methods additionally estimates the expected
discounted return after taking action u from state s, the Q-
value Q(s, u). Q-values can be recursively defined with the
Bellman equation:

Q(st, ut) = Est+1
[rt + γmax

ut+1

Q(st+1, ut+1)] (3)

and learned from off-policy transitions (st, ut, rt, st+1). Be-
cause we are interested in sample-efficient real-world learn-
ing, we use such RL algorithms that can take advantage of
off-policy data.

For control with continuous actions, computing the required
maximum in the Bellman equation is difficult. Continuous
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Figure 3. Resulting final mean distance during the vision-based training. The comparison includes residual RL, learning from demonstra-
tions and pure RL, represented by SAC. Only residual RL with SAC manages to deal with the high-dimensional input and consistently
solves all tasks after the given amount of training. The deterministic policies learn to move downwards, but often get stuck in the beginning
of the insertion and fail to recover from unsuccessful attempts.

control algorithms such as deep deterministic policy gra-
dients (DDPG) (Lillicrap et al., 2016) additionally learn a
policy πθ(ut|st) to approximately choose the maximizing
action. In this paper we specifically consider two related
reinforcement learning algorithms that lend themselves well
to real-world learning as they are sample efficient, stable,
and require little hyperparameter tuning.

2.2.1. TWIN DELAYED DEEP DETERMINISTIC POLICY
GRADIENTS (TD3)

Like DDPG, TD3 optimizes a deterministic policy (Fuji-
moto et al., 2018) but uses two Q-function approximators to
reduce value overestimation (Van Hasselt et al., 2016) and
delayed policy updates to stabilize training.

2.2.2. SOFT ACTOR CRITIC (SAC)

SAC is an off-policy value-based reinforcement learning
method based on the maximum entropy reinforcement learn-
ing framework with a stochastic policy (Haarnoja et al.,
2018).

We used the implementation of these RL algorithms publicly
available at rlkit (Pong et al., 2018).

2.3. Residual Reinforcement Learning

Instead of randomly exploring from scratch, we can inject
prior information into an RL algorithm in order to speed up
the training process, as well as to minimize unsafe explo-
ration behavior. In residual RL, actions ut are chosen by
additively combining a fixed policy πH(st) with a paramet-
ric policy πθ(ut|st):

ut = πH(st) + πθ(st). (4)

The parameters θ can be learned using any RL algorithm.
In this work, we evaluate both SAC and TD3, explained in
the previous section.

A simple P-controller serves as the hand-designed controller

πH of our experiments. The P-controller operates in Carte-
sian space and calculates the current control action by

πH(st) = −kp · (xt − x∗), (5)

where x∗ denotes the commanded goal location. As control
gains we use kp = [ 1, 1, 0.3 ]. This P-controller quickly
centers the end-effector above the goal position and reaches
the goal after about 10 time steps when starting from the
reset positions, which is located about 5cm above the goal.

Figure 4. Successful insertion on the Model-E connector task. The
32× 32 grayscale images are the only observations that the image-
based reinforcement learning algorithm receives.

2.4. Learning from Demonstrations

Another method to incorporate prior information is to use
demonstrations from an expert policy to guide exploration
during RL. We first collected demonstrations with a key-
board controller. Then, we add a behavior cloning loss while
performing RL that pushes the policy towards the demonstra-
tor actions, as previously considered in (Nair et al., 2018).
Instead of DDPG, the underlying algorithm RL algorithm
used is TD3.

https://github.com/vitchyr/rlkit
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D-Sub connector Perfect Goal Noisy Goal
Human Controller 100% 44%
SAC 16% 0%

Residual RL Dense 100% 60%
Images 100% 64%

Model-E Connector Perfect Goal Noisy Goal
Human Controller 52% 24%
SAC 0% 0%

Residual RL Dense 100% 76%
Images 100% 76%

Figure 5. Performance evaluation on the D-Sub connector. We report the average success rate out of 25 rollouts of the trained policies.

3. Experiments
We evaluate the industrial applicability of the residual RL ap-
proach on a variety of connector insertion tasks that are per-
formed on a real robot, using easy-to-obtain reward signals.
In this section, we consider two types of natural rewards
which are intuitive to humans: an image directly specifying
a goal and a binary sparse reward indicating success. For
both cases, we report success rates on tasks they solve. We
aim to answer the following questions: (1) Can such trained
policies provide comparable performance to policies that are
trained with densely-shaped rewards? (2) Are these trained
policies robust to light variations and noise?

3.1. Vision-based Learning

For the vision-based learning experiments, we use only raw
image observations and L1 distance in image space as the
goal. Sample images that the robot received are shown in
Fig. 4. We evaluate this type of reward on all three tasks. In
our experiments, we use grayscale images converted from
RGB ones, this simplification reduces input space; but is
good enough for our experiments.

3.2. Learning from Sparse Rewards

The applicability of a sparse reward function is explored
on an insertion of the USB connector. The binary insertion
signal is used as the metric for success. This experiment is
most applicable to electronic manufacturing settings where
the electrical connection between connectors can be directly
measured.

3.3. Robustness

For safe and reliable future usage, it is required that the
insertion controller is robust against small measurement or
calibration errors that can occur when disassembling and
reassembling a mechanical system. In this experiment, small
goal perturbations are introduced in order to uncover the
required setup precision of our algorithms.

3.4. Exploration Comparison

One advantage of using reinforcement learning is the ex-
ploratory behavior that allows the controller to adapt from
new experiences, unlike a deterministic control law. The

two RL algorithms we consider in this paper, SAC and TD3,
explore differently. SAC maintains a stochastic policy, and
the algorithm also adapts the stochasticity through training.
TD3 has a deterministic policy, but uses another noise pro-
cess (in our case Gaussian) to inject exploratory behavior
during training time. We compare the two algorithms, as
well as when they are used in conjunction with residual RL,
in order to evaluate the different exploration schemes.
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Figure 6. Comparison of two RL algorithms, SAC and TD3, on the
USB insertion task with sparse rewards. Using residual RL, both
algorithms can solve the task. Without residual RL, TD3 struggles
to solve the task while SAC eventually does solve it to the same
level of performance as the residual RL methods. We believe the
difference may be due to the adaptive noise in SAC.

4. Results
In order to evaluate our experiments with dense and vision-
based rewards, we analyze the achieved final distance to
the goal throughout the training process. Policies trained
with sparse rewards are compared based on their success
rate because their training objective does not include the
minimization of the distance to the goal. We report the
success rate of all final policies and compare their robustness
towards measurement noise in the goal location.

4.1. Vision-based Learning

The results of the vision-based experiment are shown in
Fig. 3. Our experiments show that a successful and con-
sistent vision-based insertion policy can be learned from
relatively few samples using residual RL with SAC. This
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result suggests that goal-specification through images is a
practical way to solve these types of industrial tasks.

Interestingly, during training with pure RL, the policy would
sometimes learn to “hack” the reward signal by moving
down in the image in front of or behind the socket. In con-
trast, the stabilizing human-engineered controller in resid-
ual RL provides sufficient horizontal control to prevent this
and it also transforms the 3-dimensional task into a quasi
1-dimensional problem for the reinforcement learning algo-
rithm, which explains the very good results obtained with
residual RL in conjunction with vision-based rewards.

4.2. Learning From Sparse Rewards

In this experiment, we compare several methods on the USB
insertion task with sparse rewards. The results are reported
in Fig. 7.
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Figure 7. Learning curves for solving the USB insertion task with
a sparse reward are shown. In this experiment, ground truth state
is given as observations to the agent. Residual RL and RL with
learning from demonstrations both solve the task relatively quickly,
while RL alone (SAC) takes about twice as long to solve the task
at the same level of performance.

4.3. Robustness

In previous set of experiments, the goal locations were
known exactly. In this case, the hand-engineered controller
performs well. However, once noise is induced to the goal
location, the deterministic P-controller does not solve the
task anymore. After training on perfect observations, a goal
perturbation is created artificially and the controllers are
tested under this condition. All results of our robustness
evaluations are listed in Tab. 1, Tab. ??, and Tab. ??.

4.4. Exploration Comparison

A comparison of TD3 and SAC is made in Fig. 6. When
combined with residual RL, they perform comparably.
When considering RL alone, TD3 learns the task faster

Table 1. Test-time performance on the USB insertion task. Noised
is added in form of ±1mm perturbations of the goal location. We
report the average success rate out of 25 rollouts.

USB Perfect Goal Noisy Goal

Human Controller 100% 60%

SAC 16% 8%

RL + LfD 100% 32%

Residual RL

Dense 100% 84%

Sparse, SAC 88% 84%

Sparse, TD3 100% 36%

Images 100% 80%

than SAC. However, TD3 is significantly less robust, as
shown in Tab. 1. Furthermore, we found that the outputted
action of TD3 approaches the extreme values at the edge
of the allowed action space. This suggests it finds a local
minimum, which performs well, but may not be robust and
TD3 cannot improve beyond that policy.

5. Discussion and Future Work
In this paper we studied residual RL with natural rewards
and demonstrated that this approach can solve complex in-
dustrial assembly tasks with tight tolerances, e. g. connector
plug insertions. We introduced vision inputs to the residual
RL formulation, which increases the algorithm’s usefulness
for a wide range of industrial applications. Compared to
previous work (Johannink et al., 2019), which uses dense re-
ward signals, we showed that we can learn insertion policies
only from sparse binary rewards or even purely from goal
images. We conducted a series of experiments for various
connector type assemblies and could demonstrate the fea-
sibility of our method, even under challenging conditions
such as noisy goals and complex connector geometries. Our
study motivates the application of residual RL to industrial
automation tasks, where reward shaping is not feasible, but
sparse rewards or image goals can often be provided.

Future work will include more complex environments fo-
cusing on multi-stage assembly tasks through vision. This
would pose a challenge to the goal-based policies as the
background would be visually more complex. Moreover,
multi-step tasks involve adapting to previous mistakes or
inaccuracies, which could be difficult, however, in theory
should be able to be handled by RL. Extending the presented
approach to multi-stage assembly tasks will pave the road
to a higher robot autonomy in flexible manufacturing.
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Appendix

A. State-Based Training
A.1. Dense Reward Connector Plug Insertion

After evaluating the tasks in the above settings, we further
evaluate with full state information with a dense and care-
fully shaped reward signal, given in Eq. 2, that incorporates
distance to the goal and force information. Evaluating in
this setting gives us an “oracle” that can be compared to
the previous experiments in order to understand how much
of a challenge sparse or image rewards pose for various
algorithms.

A.2. Dense Reward Connector Plug Insertion

The results of the experiment with dense rewards are shown
in Fig. 8.

Here, the same conclusions of residual RL outperforming
pure RL hold. Due to the shaped reward, pure RL makes
more initial progress, but cannot overcome the friction re-
quired to fully insert the plugs. It appears that the hand-
designed reward function does not incentivise the full inser-
tion enough, as we were able to obtain better results on the
USB insertion with sparse rewards.

B. Related Work
Learning has been applied previously in a variety of robotics
contexts. Different forms of learning have enabled au-
tonomous driving (Pomerleau, 1989), biped locomotion
(Nakanishi et al., 2004), block stacking (Deisenroth et al.,
2011), grasping (Pinto & Gupta, 2016), and navigation
(Giusti et al., 2015; Pathak et al., 2018). Among these meth-
ods, many involve reinforcement learning, where an agent
learns to perform a task by maximizing a reward signal. Re-
inforcement learning algorithms have been developed and
applied to teach robots to perform tasks such as balancing a
robot (Deisenroth & Rasmussen, 2011), playing ping-pong
(Peters et al., 2010) and baseball (Peters & Schaal, 2008).
The use of large function approximators, such as neural
networks, in RL has further broadened the generality of RL
(Mnih et al., 2013). Such techniques, called “deep” RL,
have further allowed robots to perform fine-grained manip-
ulation tasks from vision (Levine et al., 2016), open doors
(Gu et al., 2016), score a hockey puck (Chebotar et al.,
2017), and grasp objects (Kalashnikov et al., 2018). In this
work, we further explore solving real-world robotics tasks
using RL.

Many RL algorithms introduce prior information about the

specific task to be solved through various means such as
reward shaping (Ng et al., 1999), incorporating a trajectory
planner (Thomas et al., 2018; Eruhimov & Meeussen, 2011;
Mayton et al., 2010), learning classifiers between goals and
non-goals (Ho & Ermon, 2016; Pinto & Gupta, 2016; Levine
et al., 2017). These methods require access to various goal
states to build a robust classifier, which might be difficult
to collect in assembly as there is often only one goal image
possible. Reward shaping can become arbitrarily difficult as
the complexity of the task increases. For complex assembly
tasks, trajectory planners require a host of information about
objects and geometries which can be difficult to provide.

Mainly, previous work on incorporating prior information
has focused on using demonstrations either to initialize a
policy (Peters & Schaal, 2008; Kober & Peter, 2008), infer
reward functions using inverse reinforcement learning (Finn
et al., 2016; Abbeel & Ng, 2004; Ziebart et al., 2008; Rhine-
hart & Kitani, 2017; Fu et al., 2018) or to improve the policy
throughout the learning procedure (Hester et al., 2018; Nair
et al., 2018; Rajeswaran et al., 2018; Večerı́k et al., 2017).
These methods require multiple demonstrations, which can
be difficult to collect, especially for assembly tasks. More
recently, manually specifying a policy and learning the resid-
ual task has been proposed (Johannink et al., 2019; Silver
et al., 2018). In this work we evaluate both residual RL and
combining RL with learning from demonstrations (LfD).

Previous work has also tackled high precision assembly
tasks, especially insertion-type tasks. One line of work
focuses on obtaining high dimensional observations, includ-
ing geometry, forces, joint positions and velocities (Li et al.,
2014; Tamar et al., 2017; Inoue et al., 2017; Luo et al., 2019),
but this information is not easily procured, increasing com-
plexity of the experiments and the supervision required to
collect the data. Other work relies on external trajectory
planning or very high precision control (Inoue et al., 2017;
Tamar et al., 2017), but this can be brittle to error in other
components of the system, such as perception. We show
how our method not only solves insertion tasks with much
less information about the environment, it also does so under
noisy conditions.
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