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Abstract
Temporal Difference (TD) learning is a widely
used class of algorithms in reinforcement learn-
ing. The success of TD learning algorithms relies
heavily on the choice of the learning rate used.
In this paper, we use recent results on finite-time
performance of TD learning with linear function
approximation to design an adaptive learning rate
selection rule. The rule comprises a diagnostic
test which determines whether the algorithm has
reached the steady-state, i.e., the algorithm has
stopped learning. Once such a determination is
made, the rule adapts the learning rate (reduc-
ing the step size) so that the algorithm continues
to learn. We implement our proposed rule on a
variety of popular reinforcement learning appli-
cations and show that in all these scenarios, our
rule outperforms the best fixed learning rate as
well as other commonly used adaptive learning
rate selection rules.

1. Introduction
Reinforcement learning (RL) refers to a collection of learn-
ing algorithms to compute near optimal policies in dynamic
programming and Markov Decision Processes (MDP) when
the underying model is unknown or too complicated to de-
scribe. Here, we consider a critical component of RL, which
is the estimation of a value function of a given feedback
policy in an MDP. Temporal difference (TD) learning is
commonly used for this purpose, along with some form of
function approximation to approximate the value function.
Common function approximation schemes include linear
function and neural network approximations. In this paper,
we study TD learning with linear function approximation,
given Markovian samples from an MDP operating under a
fixed feedback/control policy.

The convergence rate of TD learning can vary significantly
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depending on the learning rate rule that is used. The three
commonly studied learning rate rules are the following:
• Diminishing learning rates: The most widely studied

learning rate rule in the theoretical literature is the di-
minishing learning rate rule motivated by the stochastic
approximation theory. Under this rule, if εk denotes
the learning rate at time-step k, then {εk} is chosen
to satisfy

∑
k εk = ∞ and

∑
k ε

2
k < ∞ (popularly

known as a Robbins-Monro sequence). The reason
for these conditions on the learning rates is that, under
these conditions, it can be shown that the TD learning
algorithm converges asymptotically with probability 1.
However, this learning rate rule is typically not used in
practice due to the fact that the learning rate quickly
becomes very small and thus, parameter updates under
TD learning change very slowly. In this family of learn-
ing rates, the most well-known is the simple back-off
strategy, which sets εk = α

k for some constant α > 0.
Note that we can replace k in the above strategy by kβ ,
where β ∈ ( 12 , 1], and still satisfy the Robbins-Monro
sequence conditions (see (George & Powell, 2006) for
a detailed discussion).

• Constant learning rate: The other extreme from di-
minishing learning rates is a constant learning rate, i.e.,
εk = ε ∀k. The rationale here is that, since the learn-
ing rate is fixed, it cannot become arbitrarily small and
hence, learning will never slow down. However, given
a certain number of samples from which one has to
learn the value function, it may be difficult to deter-
mine the optimal or appropriate fixed ε to use. If ε is
“large,” the learning proceeds quickly initially but the
error at the end will be large, and on the other hand, if ε
is “small,” the transient phase of the learning algorithm
will last a long time and one may not be able to get a
desirable accuracy before the samples are exhausted.

• Learning rate schedules: In practice, most RL software
developers use a learning rate schedule, i.e., a fixed ε is
used for a certain amount of time and then it is reduced,
and this is repeated a few times. The choice of when
the learning rate ε should be reduced is determined
by extensive experimentation and is chosen carefully
for each RL environment studied. Typically, these are
published by researchers on platforms such as github
and then used by others.
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Our goal in this paper is to adaptively choose the learning
rate for TD learning with linear function approximation by
observing the evolution of the function parameters as the
algorithm progresses. For this purpose, we will leverage
the recent results on finite-time performance bounds for
TD-learning in (Srikant & Ying, 2019).

2. Background
We consider a discounted cost MDP, and let {Xk} denote
the Markov chain associated with the MDP operating under
a fixed policy. Here it is assumed that Xk takes values in a
finite state space. We let V (i) denote the value function in
state i and thus, it satisfies the Bellman equation

V (i) = c(i) + α
∑
j

pijV (j),

where c is the instantaneous cost, α is the discount factor,
and pij is the probability of transitioning from state i to j.

The tabular version of the TD learning algorithm estimates
V from samples Xk as follows:

Vk+1(Xk) = Vk(Xk)− ε(V (Xk)− c(Xk)−αV (Xk+1)),

where ε is a fixed learning rate. Since the theory from which
we derive our adaptive learning rate rule later is based on
a fixed learning rate, we have presented the TD learning
equation above in terms of a fixed learning rate, but other
learning rate rules can be used as well. However, this version
of TD learning requires one to store the value function for
all states and when the state space is large, such a storage
requirement makes the algorithm infeasible to implement.
Instead, a common approach is to approximate the value
function V (i) by θTφ(i), i.e., V (i) ≈ θTφ(i), where φ(i)
is a known feature vector associated with state i and θ is the
unknown parameter to be estimated.

The TD learning algorithm associated with linear function
approximation is as follows:

θk+1 = θk
−ε
(
θTk φ(Xk)− c(Xk)− αθTk φ(Xk+1)

)
φ(Xk)

(1)
Recently, a number of papers have studied the convergence
properties of the above algorithms, under additional assump-
tions such as the i.i.d. samples assumption and the addition
of a projection step (Lakshminarayanan & Szepesvari, 2018;
Bhandari et al., 2018). Some of these papers also allow for
averaging of the iterates.

The starting point for our work is the result in (Srikant
& Ying, 2019) which studies the basic TD algorithm (1),
with no significant additional assumptions, and provides
convergence rate bounds. We first note that, as in (Srikant
& Ying, 2019), we can rewrite (1) in a form that is more

convenient for our subsequent discussion.

θk+1−θ∗ = θk−θ∗+ε (A(Xk)(θk − θ∗) + b(Xk)) , (2)

where A(XK) is a matrix whose entries are functions of the
state Xk, b(Xk) is a zero-mean random vector, and θ∗ is the
centering offset from 0, the equilibrium point of the ODE

dθ

dt
= E(A(X∞))θ,

where X∞ denotes a random variable with a distribution
equal to the stationary distribution (which is assumed to
exist) of the Markov chainX. In (Srikant & Ying, 2019), the
linear stochastic approximation algorithm (2) was studied
and the following result was established.

Theorem 1

E(‖θk − θ∗‖2) ≤ K1(1−K2ε)
k +K3ε,

for all sufficiently small ε and large k, where K1, K2 and
K3 are problem-dependent constants. �

3. Adaptive Learning Rate Rule
Suppose that our goal is to choose the learning rate as a func-
tion of the time step in order to minimize the mean-squared
error for a given number of samples. In principle, one can
assume time-varying learning rates, use the mean-squared
error expressions for time-varying learning rates in (Srikant
& Ying, 2019) (which are generalizations of Theorem 1),
and try to optimize the learning rates to minimize the error
for the given number of samples. However, this optimization
problem is computationally intractable. We note that even if
we assume that we are only going to change the learning rate
a finite number of times, the resulting optimization problem
of finding the times at which such changes are performed
and finding the learning rate at these change points is an
equally intractable optimization problem. Therefore, we
have to devise simpler adaptive learning rate rules.

To motivate our learning rate rule, we first consider a time
T such that error due to the transient and steady-state parts
in Theorem 1 are equal, i.e.,

K1(1−K2ε)
T = K3ε (3)

From this time onwards, running the TD algorithm any
further with ε as the learning rate is not going to significantly
improve the mean-squared error. In particular, the mean-
squared error beyond this time is upper bounded by twice
the steady-state error K3ε. Thus, at time T, it makes sense
to reset ε as ε ← ε/ξ, where ξ > 1 is a hyperparameter.
Roughly speaking, T is a time at which one is close to
steady-state for a given learning rate, and therefore, it is the
time to reduce the learning rate to get to a new ”steady-state”
with a smaller error.
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The key difficulty with implementing the above idea is that it
is difficult to determine T. If we were able to plot ‖θk− θ∗‖
as a function of k, then one can devise some algorithm
to determine whether this expression has reached close to
its steady-state. However, θ∗ is unknown and hence, it is
difficult to use this approach.

Our second key idea is to estimate whether the algorithm is
close to its steady-state by observing ‖θk − θ0‖ where θ0 is
our initial guess for the unknown parameter vector and is
thus known to us. Note that ‖θk − θ0‖ is zero at k = 0 and
will increase to ‖θ∗ − θ0‖ in steady-state in the absence of
any randomness, see Figure 1 for an illustration.

Figure 1. The evolution of ‖θk − θ0‖.

To derive a test to estimate whether ‖θk − θ0‖ has reached
steady-state, we first note the following inequality for k ≥ T
(i.e., after entering the steady-state time defined in (3)):

E[‖θ0 − θ∗‖]− E[‖θk − θ∗‖]
≤ E[‖θk − θ0‖] ≤ E[‖θk − θ∗‖] + E[‖θ0 − θ∗‖]

⇒ c−
√

2K3ε ≤ E[‖θk − θ0‖] ≤ c+
√
2K3ε

(4)

where the first pair of inequalities follow from the triangle
inequality and the second pair of inequalities follow from
Theorem 1, Jensen’s inequality and letting c = E[‖θ0−θ∗‖].
Now, for k ≥ T , consider the following N points: {xi =
i, yi = ‖θk+i− θ0‖}Ni=1. Since these points are all obtained
after the steady-state is reached, if we draw the best-fit
line through these points, its slope should be small. More
precisely, let ψN denote the slope of the best-fit line passing
through these N points. Using (4) along with formulas
for the slope in linear regression, and after some algebraic
manipulations, one can show that:

|E[ψN ]| = O

(√
ε

N

)
, Var(ψN ) = O

(
1

N2

)
(5)

Therefore, if N ≥ κ√
ε
, then the slope of the best-fit line

connecting {xi, yi} will be O
(√

ε
N

)
with high probability

(for a sufficiently large constant κ > 0). On the other hand,

Algorithm 1 Adaptive Learning Rate Rule
Hyperparameters: α, σ, ξ,N
Initialize ε = α, ψN = 2σ

√
ε, θ0, θini = θ0.

for i = 1, 2, ... do
Do TD learning update.
Compute ψN = Slope

(
{k, ‖θi−k − θini‖}N−1k=0

)
.

if |ψN | < σ
√
ε

N then
ε = ε

ξ .
θini = θi.

end if
end for

when the algorithm is in the transient state, the difference
between ‖θk+m−θ0‖ and ‖θk−θ0‖will beO(mε) since θk
in (2) changes by O(ε) from one time slot to the next. Using
this fact, the slope of the best-fit line through N consecutive
points in the transient state can be shown to beO (ε), similar
to (5). Since we choose N ≥ κ√

ε
, the slope of the best-fit

line in steady state, i.e., O
(√

ε
N

)
will be lower than the

slope of the best-fit line in the transient phase, i.e., O (ε)
(for a sufficiently large κ). We use this fact as a diagnostic
test to determine whether or not the algorithm has entered
steady-state. If the diagnostic test returns true, we update
the learning rate (see Algorithm 1).

4. Experiments
4.1. Setup

We implemented our adaptive learning rate selection rule
on a variety of popular reinforcement learning domains
and compared its performance with that of the best fixed
learning rate and the best diminishing/back-off learning
rate schedule (as discussed in Section 1). We consider the
following reinforcement learning problems/domains1:

1. Mountain Car: In the basic mountain car problem,
an underpowered car is positioned in a valley between
two mountains on a one-dimensional track. The aim
of the problem is to drive the car to the top of the
mountain on the right-hand side, but the engine power
available is insufficient to simply accelerate and power
through to the top. Therefore, a player has to build
up momentum by going back and forth between the
two mountains until the car has sufficient momentum
to reach its goal. The state space, action space, cost
structure and initialization details for the mountain car
problem are as follows:

• State Space: (Car Position, Car Velocity) ∈
[−1.2, 0.6]× [−0.07, 0.07].

1We used the OpenAI Gym implementation of these environ-
ments, available at https://gym.openai.com/.

https://gym.openai.com/


Adaptive Learning Rate Selection for Temporal Difference Learning

• Action Space: 0, 1 and 2 (denoting left, no and
right acceleration respectively).

• Cost Structure: +1 cost incurred for every time
step the car has not achieved its goal. 0 cost in-
curred upon reaching the goal.

• Initialization/Starting State: The car’s position
is initialized to a random value in [−0.6, 0.4]. Its
velocity is initialized to 0.

2. Inverted Pendulum: In the classic inverted pen-
dulum swing-up problem, a frictionless pendulum is
hinged/pivoted at one end and the aim of the problem
is to keep the pendulum in an upright position (with
respect to the pivot) for as long as possible by applying
a torque at the pivot point (sometimes referred to as the
joint effort). The state space, action space, cost struc-
ture and initialization details for the inverted pendulum
problem are as follows:

• State Space: (cos(θ), sin(θ), θ̇) ∈ [−1.0, 1.0]×
[−1.0, 1.0] × [−8.0, 8.0]. Here, θ ∈ [−π, π] de-
notes the angular position of the pendulum with
respect to the pivot.

• Action Space: Torque ∈ [−2.0, 2.0].
• Cost Structure: The equation associated with the

cost function is the following:

θ2 + 0.1θ̇ + 0.001× torque2.

• Initialization/Starting State: The pendulum’s
angular position is initialized to a random value
in [−π, π]. Its angular velocity is initialized to a
random value ∈ [−1, 1].

3. Frozen Lake: The frozen lake game is a single player
game in which the player has to navigate a 4× 4 grid
with the goal of arriving at the finish point on the grid
from the starting position without falling in any of the
death zones (also known as holes). At each point on
the grid, the player has the option to move around to
any of the neighboring points. If the player moves to a
hole, the player is killed and re-spawned at the starting
point. The state space, action space, cost structure and
initialization details for the frozen lake game are as
follows:

• State Space: A set with a cardinality of 16, i.e.,
the total number of points on the grid.

• Action Space: Up, Down, Left or Right. Note
that if the point on the grid is such that it does not
have a neighbor in a particular direction, moving
in that direction will keep the player at his/her
current position.

• Cost Structure: 0 cost associated with every time
step until the player reaches his/her goal. −1 cost
incurred upon reaching the goal.

• Initialization/Starting State: The player is always
initialized to state 0 which is the starting position
on the grid.

We evaluate the following policies using TD learning for
each aforementioned problem/domain:

• Mountain Car - At each time step, choose a random
action ∈ {0, 2}, i.e., accelerate randomly to the left or
right.

• Inverted Pendulum - At each time step, choose a ran-
dom action in the entire action space, i.e., apply a
random torque ∈ [−2.0, 2.0] at the pivot point.

• Frozen Lake - At each time step, pick a random action
in the entire action space, i.e., go in a random direction
from the current position.

Since the true value of θ∗ is not known in the problem
domains we consider, to quantify the performance of the TD
learning algorithm, we use the error metric known as the
norm of the expected TD update (NEU, see (Sutton et al.,
2009) for more details). For linear function approximation,
in the Mountain Car and the Inverted Pendulum problems,
we use a O(3) Fourier basis (see (Konidaris et al., 2011)
for more details) and for the Frozen Lake game, we use
one-hot encoding for the different states. Also, for all the
experiments, we use γ = 0.95 as the discount factor.

4.2. Hyperparameter Tuning

For each learning rate rule, we did the following tuning to
choose the best hyperparameters:

• For finding the best fixed learning rate in each problem
domain, we did a grid search over a wide variety of
fixed learning rates and found the following to be the
best: Mountain Car - 0.0075, Inverted Pendulum -
0.001, Frozen Lake - 0.01.

• For finding the best back-off strategy (εk =
max{εmin,

α
kβ
}), we first fixed α and conducted a grid

search to find the best β. We considered the following
values for β: (0.6, 0.7, 0.8, 0.9, 1.0). In all the prob-
lem domains, the best performance was obtained for
β = 0.6. We subsequently conducted a grid search for
α over a wide variety of values and found the following
to be the best: Mountain Car - 0.5, Inverted Pendulum
- 0.2, Frozen Lake - 1.

• For the proposed adaptive learning rate rule, we fixed
ξ = 1.2, N = 200 in all the domains since we didn’t
want the decay in the learning rate to be too aggressive
and the resource consumption for slope computation
to be high. We then fixed α and conducted a grid
search over a wide variety of values to find the best
σ. Subsequently, we conducted a grid search over
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α. Interestingly, the adaptive learning rate rule was
reasonably robust to the value of α used and hence
we use α = 0.05 in all the domains. Effectively, the
only hyperparameter that really required tuning was
σ. The following values for σ were found to be the
best: Mountain Car - σ = 0.0075, Inverted Pendulum
- σ = 10, Frozen Lake - σ = 0.01.

Note that for each learning rate rule we ensure that the
learning rate never goes below εmin = 10−5. This is done to
ensure that the TD learning algorithm does not stop learning
altogether.

4.3. Results

For each experiment, one run involved the following:
10, 000 episodes with the number of iterations in each
episode varying from 50 − 200 depending on the prob-
lem/domain. After every 1, 000 episodes, training/learning
was paused and the NEU was computed, averaged over
1, 000 test episodes. Depending on the problem/domain,
50− 250 of such runs were conducted and the results aver-
aged over these runs. Note that the learning rate for each
adaptive strategy was adapted at the episodic level due to
the episodic nature of the problems. The results are reported
in Figures 2 - 4. We report the performance of the different
rules from the 5, 000th episode onward since the large error
values in the initial episodes make it hard to visually inter-
pret the graph for the eventual performance of the different
rules.

Figure 2. Performance of different learning rate rules in the Moun-
tain Car problem.

From the figures, we can observe that our rule performs
much better than the best fixed learning rate as well as the
best back-off learning rate strategy. Note that since we tuned
each strategy to have the lowest error at the end of 10, 000
episodes, the relative difference between the performance
of our strategy and others is significant.

Figure 3. Performance of different learning rate rules in the In-
verted Pendulum problem.

Figure 4. Performance of different learning rate rules in the Frozen
Lake problem.

Remark 1 We also implemented a procedure similar to
SGD1/2 in (Chee & Toulis, 2018), which was proposed
recently and has a similar motivation as our idea but a dif-
ferent diagnostic test. We do not report the results of that
procedure here as in all the domains that we considered,
their diagnostic test was too conservative and failed to de-
tect the steady state in a reasonable amount of time resulting
in a much worse performance as compared to our method.

5. Conclusion
In this paper, we presented an adaptive learning rate se-
lection rule for TD learning with linear function approxi-
mation. The rule comprises a diagnostic test to determine
whether the algorithm has entered steady state and adapts
the learning rate accordingly. We implemented the rule
on various popular reinforcement learning applications and
demonstrated its significant utility in practice.
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