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Abstract

In many reinforcement learning (RL) game tasks,
episodes should be interrupted after a certain time,
as the agent could sometimes fall into a dead-
lock state. This paper provides a dynamic inter-
ruption policy in RL game training via a newly
defined multi-sampling multi-armed bandit (MS-
MAB) model, and offers an efficient algorithm
named Exp3.P.MS for the new bandit setting. The
experimental results show that the dynamic inter-
ruptions can adapt to the weak-to-strong perfor-
mance of the RL agent and spur a fast learning in
game playing.

1. Introduction

Reinforcement learning (RL) is a semi-supervised learning
model in machine learning, which allows an agent to take
actions and interact with an environment so as to maximize
the total rewards (Sutton, 1984). This technique has been
widely used in game playing (Gelly et al., 2006; Kocsis &
Szepesviri, 2006; Lample & Chaplot, 2017). However, in
many game tasks, there is a troublesome state called dead-
lock (Junghanns & Schaeffer, 1998). When the RL agent is
deadlocked in an episode, the episode will be unsolved, and
the learning would come to a standstill or progress slowly.
The conventional way to avoid such situations is to interrupt
the episode after a fixed number of steps (or time), no matter
whether the situation is deadlocked or not. After that, the
game level resets to a new one, and the learning process is
revitalized in a new environment.

Using a fixed interruption length to avoid unsolvable states
in deadlocks is feasible but definitely not a perfect solution.
One serious drawback is that the learning process is sensitive
to the varying values of interruption lengths, and thus it is
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hard to get a relatively optimal choice, especially when
no prior knowledge exists. If the interruption length is
defined too short, many difficult game levels would never
be solved. If the interruption length is defined long enough
(In some cases, we may even have no idea of how long is
long enough), it means that the deadlocked agent would
take many useless trails until the episode being interrupted,
which directly affects the overall training efficiency.

The above mentioned shortcomings motivate the theme of
this paper, where we propose a dynamic interruption policy
that can spur a fast learning even when no prior knowledge
of optimal parameter settings of the interruption length exist-
s. The dynamic interruption policy models the interruption
rules of each episode as a sequential decision problem, and
optimize it with the multi-armed bandit (MAB) where each
arm is labeled a number representing the steps (or time)
after which the episode should be interrupted. In this MAB
model, a reward is obtained if an episode is finished within
the interruption length, and a cost component is added to
measure the training steps (or time). they are both under the
nonoblivious adversarial setup. Specially, since the perfor-
mance of the RL agent changes slowly, in one round, the
reward and cost are considered to be from a stochastic joint
distribution. And we allow a multi-sampling process in one
round. As far as we know, no prior studies have included
a similar multi-sampling process in the adversarial MAB
problem. So in this work, we call the new MAB model
multi-sampling multi-armed bandit (MSMAB).

We present an efficient algorithm named Exp3.P.MS for
the MSMAB model, achieving an expected regret bound of
O(y/nKIn (K)). To the best of the authors” knowledge,
Exp3.P.MS is the first approach for solving the nonoblivious
adversarial MAB problem with reward and cost pattern.
For the Sokoban game, the experimental results show that
the proposed dynamic interruption policy is in a gradually
increasing level of trialed steps, adapting to the weak-to-
strong performance of the RL agent. Therefore, it can spur
a fast learning in RL game playing tasks, even if no prior
knowledge of optimal parameter settings of the interruption
length exists.
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2. Problem Setup and Main Result
2.1. Problem Formulation

According to the statement in Section 1, the proposed MS-
MAB is an adversarial MAB model enriched by a cost
component and a multi-sampling process in each round.
Specifically, suppose there are some number of arms. Each
arm is labeled with a number representing the steps (or time)
after which the game level should be interrupted. At the
beginning of each round, first an arm is pulled, i.e., one
label is selected, to give an interruption length. For a game
level, a reward is obtained if the level is finished within the
interruption length. As the steps of trial in each game level
are inherently costly, a cost component is added to measure
the truly consumed steps. Since the performance of the RL
agent changes slowly, in one round, the reward and cost are
considered to be from a stochastic joint distribution. And
we allow a multi-sampling process in one round. It is not
until the current interruption policy is abandoned that we
will pull a new arm and a new round will start.

From a global point of view, MSMAB is a nonoblivious
adversarial bandit model, which can be clarified by the fol-
lowing two aspects. First, the performance of the RL agent
is positively related to the learning time. This means that the
reward-cost pattern is not a stochastic setting. Second, in
most cases, the generated game levels would be recycled for
training. When a game level reappears in training, its reward
will be assigned a different value. This equals to say that
the reward setting depends on the bandit agent’s previous
behaviors. Therefore, the adversary is nonoblivious.

First, we take the most general case of the MSMAB problem
considering that the sequence of reward and cost vectors are
set by the adversary that can depend on the bandit agent’s
previous behaviors. A concrete example of the reward and
cost setting is described in Section 3 for the Sokoban game.
Consider a machine with K (K > 2) distinct arms. At
each round ¢, an adversary assigns arm ¢ a joint distribution
D; ; of the reward and cost. The bandit agent selects ex-
actly one of the arms and is dedicated to pulling this arm
with a sampling mechanism. The distribution D; ; at one
round is assumed to be unchanged. For a stochastic sam-
ple (v, ¢;) drawn from D, ;, the cost is bounded, say
cit € (0,7 (1; < 1), and the reward is bounded by the
cost, say 7, € [0,a - ¢; ], where a is a positive constant
(WLOG, we adopt 7; ; € [0, ¢; ¢]). The regret is to measure
the difference between the cumulative rewards when always
playing the optimal arm, defined as the expected reward
under the resource the bandit agent has consumed, and the
realized rewards of the bandit agent,

Reg(n)

‘= Zth,t, (D

where Ry, ; and C7, + denote the total rewards and costs at

E

Algorithm 1 Exp3.P.MS

Parameters: n € R* and v, 8 € [0, 1].
Let p; be the uniform distribution over 1,. .., K.
Foreachroundt =1,...,n
(1) Draw an arm I; from the probability distribution py,
andlet Ry, s = 0,Cy, + = 0.
while C;, ; < 2In(n+1) do
Pull arm I; and record the reward ry,; and the
costcy, ¢,

Rio < Rip+711,6 Croe < Croe+ s

Break the loop with probability c;, ;.
end while
(2) Compute the estimated gain for each arm:

- Ry d_;+3
Ry — Iotlr=i + 57
Dit

)

and update the estimated cumulative gain for each arm:

¢
Gir =Y Ris
s=1

(3) Compute the new probability distribution over the
arms pi+1 = (P1,t41,- - - s PK,t+1) Where:

€xXpng;, Y
pi,t+1:(1_7)K(—t)+E'
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round t.

The definition of (1) is similar to the classic regret form
described in the seminal paper (Bubeck et al., 2012). But
since at round ¢, we can only observe the sampling pro-
cess in arm I; and the realized cost C7, ; and reward Ry, ¢,
the cumulative rewards of the best arm are defined as the
expected reward under the resource the bandit agent has con-
sumed. A desirable property of this setting is that it allows
the comparison of reward under the same time horizon.

2.2. Expected Regret Bound

In this part, we propose an algorithm called Exp3.P.MS and
analyze its expected regret bound. It can be considered as
a general solver of the MSMAB model (the pseudocode is
given in Algorithm 1).

Similar to the Exp3.P algorithm developed in (Auer et al.,
2002), algorithm Exp3.P.MS maintains the exponential
reweighting of the cumulative estimated gains to define
the probability distribution from which the bandit agent will
select the arm I;. The key task is to build an unbiased esti-

mator of P‘ t% of any other arm. To achieve this goal, we
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take a carefully designed rule for the multi-sampling process.
Specifically, for round ¢ after pulling an arm with a cost of
cr, .+ the bandit agent will continue to play the current arm
with a probability of 1 — ¢y, ¢, i.e., to pull a new arm with a
probability of ¢y, ;. This rule is understandable in practical
scenario. Suppose a player facing with several bandit arms.
When he has little knowledge about these choices, he is
much likely to set a psychological budget for each choice.
If the cost is small, he is more inclined to make another trial
of the current choice, and vice versa. More specifically, at
each round, we denote \; = (7}, ¢, €;), where the index
7 is used to count the number of sampling and we omit
the notations of I; and ¢ without ambiguity. Here, ¢; is a
random variable where ¢; = 1 means the sampling process
would continue, and ¢; = 0 represents the sampling pro-
cess would end. And it satisfies P(¢; = 1) = 1 — ¢;, and
P(e¢; = 0) = ¢;. Then we can get,

E [Cr¢=1, )
Alt:oo]
Ry, ¢17,— Elri
ts t — 3 3
AI,EIt [ Dit } IE:[Ci,t]7 )

where the notation J denotes the last time of sampling at
round ¢. Proofs of (2) and (3) are presented in the supple-
mental materials.

To prevent the sampling process from accumulating too
much cost (compared with the fact E[C, ;] equals to 1), we
give a comfortable constraint B = 21n (n + 1) to bound the
value of Cf, +. Once Cf, + > B, the procedure of sampling
will be interrupted, and we can always get the inequality of
Clt,t <B+1.

Theorem 1 (Expected regret of Exp3.P.MS) If the algo-
rithm Exp3.P.MS is run with

Kn(K)

,n > 100,

then we can obtain that,
E[Reg(n)] < 17.33y/nK In(K) 4)

The proof of Theorem 1 is given in the supplemental mate-
rials.

2.3. Modification by Observed Side-Information

In the classic MAB model, the bandit agent can only observe
the rewards of the arm pulled, but not the rewards of other
arms. However, in some practical situations, the knowledge
of the observed actions can sometimes infer some informa-
tion of other actions. In both Alon et al. (2017) and Alon

et al. (2015), they study these partial-information models
with the feedback specified by a graph, with which more
optimal regret bounds have been reported. Similarly, in
MSMAB the label of each arm is visible to the bandit agent,
So pulling one arm can partially monitor some information
of other arms. The useful side-information can improve the
stability of the Exp3.P.MS algorithm.

Reconsider part of the setting in the MSMAB model. There
is a machine with K () > 2) distinct arms. To link the inter-
ruption policy, each arm is labeled a number 7; (WLOG, for
11 < 19, we assume 7;, < T;,) representing the steps after
which a game level should be interrupted. To discover the
side-information, consider a motivating scenario: at round
t, arm I, is pulled and we receive the cost ¢y, ¢ (cr, ¢ < 71,)
and the reward ry, ;. Based on the observation of arm I,
we assert that for any arm ¢ (¢ < 1), its reward 7; ; and
cost ¢; ¢+ at round ¢ can be confirmed. Specifically, if the
RL agent successfully completes the game level within 77,,
then we can get that the RL agent at time ¢ needs exactly
cr,,+ steps to complete the current game level. Thus, for
1 < Iy, if 7; < ¢y, 1, the cost and reward of arm ¢ are 7;
and 0, otherwise, they are cy, ; and 7y, ;. If the RL agent
failed to complete the level, this means that completing the
current game level will need more than 7, steps. Thus, for
i < I, the cost and reward of arm ¢ are 7; and 0, respective-
ly. In summary, pulling arm I, can observe the reward-cost
information of arms 1,...,I; — 1.

Meanwhile, for ¢ > I, it is easy to verify that,
Elrr,¢] < Elril, Eler, ) < Elciq).
Since,

E[cis] = E[min(é;, ;)] < E[min(%ét,n)}
T; N l

= —E[min(é&, 77,)]
TI,
-

= iE[Clth
T[t

where notation ¢; denotes the exact steps for completing the

level at round t. We get a lower bound of EZ‘:% based on
arm Iy,
E[ri,t] > Z]E['”t,t] (5)
]E[Ci,t] Ti E[Clt,t}

Based on the above mentioned facts, we make some modifi-
cations of Exp3.P.MS, the details of which is given in the
supplemental materials.

3. Experiments

We demonstrate the performance of MSMAB guided by
Exp3.P.MS in the Sokoban game. We solve this planning
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problem with the deep RL method, where the MSMAB
model is used to sequentially provide the game levels with
a dynamic interruption policy. The proposed method is
compared with the RL approach with constant interruption
length, which, to the best of the authors’ knowledge, is
almost the only way used in RL game learning. We also
analyze the impact of MSMAB on driving the RL agent to
play through an increasingly difficult level of game tasks.

3.1. Sokoban Problem

Sokoban is a challenging one-player puzzle game whose
goal is to push a number of boxes onto target tiles that are
scattered over a maze (Ge, 2018; Leme et al., 2015). The
maze is defined by a grid occupied by walls and free tiles.
The RL agent can walk through the free tiles and push a
box to any adjacent free tile of the maze. Since it does not
have pull action, many moves are irreversible, the game
becomes unsolvable if a box is pushed into a corner or wall
in many cases. Such an unsolvable state in Sokoban is
called deadlock, which, in the training process, should be
interrupted after some steps of trial. Despite its simple rule
set, Sokoban has been proved to be NP-hard (Gupta & Nau,
1992) and PSPACE-complete (Culberson, 1999), and there
is still no general solver available at present.

3.2. Experimental Setup

The generation algorithm of Sokoban game levels is adapted
from Weber et al. (2017), which creates levels with a wild
variance in difficulty. A state-of-art deep RL algorithm
known as advantage-actor-critic (A2C) (Schulman et al.,
2015) is presented for training the generated game levels.
For the A2C model with constant interruption length, the
game level would be interrupted if it is not completed by
a fixed number of steps. For the proposed method (the
A2C model combined with the dynamic interruption policy),
however, the interruption length is not fixed but dynamic.
In the rest of the paper, we call the A2C model with the
dynamic interruption policy A2CD for short.

In MSMAB setting, we add 186 arms labeled from 15 to
200, where the number is used to represent the candidate
value of the interruption length. The cost ¢ is defined as
the consumed steps, and the reward r is generated by a
nonoblivious setting. In detail, at the beginning of training,
a weighting factor w for every game level is set to 1. If
the RL agent completes a level, the bandit agent will earn a
reward of w - ¢, and at the same time, the weighting factor
for this game level is set to be halved. If the RL agent fails
to complete this level, the bandit agent will get O reward,
and we increase the weighting factor of this game level.
Formally, consider it is the m-th training time for a game
level. If the game level is successfully completed within the

interruption length, then the reward is defined as,
Tm = Wy - Cmy- (6)
The weighting factor of this game level is updated by,
W1 = 0.5 Wy (7)
If not completed, the reward is,
Tm = 0. ®)
The weighting factor is updated by,

Wint1 = Wy + 0.5 (1 — wyy). 9)

3.3. Comparative Results

One configuration of Sokoban is in a 8 x 8 grid world with
4 boxes, about 3 million game levels are generated, and we
stop the training course after 500 million steps. In addition
to the A2CD method, we run several A2C models with a
constant interruption length of 20, 50, 100, 200 steps, re-
spectively. The fraction of solved levels is calculated in
the validation dataset (1% in total), where the interruption
length is defined as 200 steps for all methods. Figure 1

0.8
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o
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— A2CD

o
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steps 1le8

Figure 1. Learning curves of A2CD and A2C models with the
interruption length of 20, 50, 100, 200 steps in a 8 x 8 grid world
with 4 boxes.

shows the learning curves of A2CD and several A2C mod-
els with constant interruption lengths. The horizontal axis
shows the sum of steps of the RL agent, which represents
the cost of training. The vertical axis is the fraction of the
solved game levels. We observe that in the first 100 million
steps, the A2C model with the interruption length of 20 steps
performs the best. But globally, it only has a performance of
less than 80% of level solved vs. nearly 85% for the A2CD
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method. This shows that a too small interruption length may
interrupt many game levels which are not yet falling into
deadlocks. The A2C model with the interruption length of
200 steps is long enough to be capable of completing the
tasks if not deadlocked. But we can see that it wastes lots
of time especially in the early stage of training. The truth is
that it needs about 420 million steps to get a performance of
80% of levels solved vs. 250 million steps of the same per-
formance in A2CD. The A2C model with the interruption
length of 50 steps performs the best in A2C models, with a
similar performance as A2CD. So under the current game
configuration, the A2C model with the interruption length
of 50 steps can be considered as a good choice. But given
that to find such an optimal parameter is costly, in this sense,
the A2CD model is more advisable.

To validate that the A2CD model is applicable for differ-
ent configurations, we implement another experiment of
Sokoban in a 12 x 12 grid world with 5 boxes. In Figure
2, it can be seen that the A2CD model shows obvious su-
periority compared to the A2C models because the fraction
of solved game levels is quite higher than that of the A2C
models. It is clear that this is achieved with the effect of the
dynamic interruption policy for saving a lot of learning time.
Remarkably, under this environment, the A2C model with
the interruption length of 50 steps (worked well in 8 x 8 grid
world) is not a good solution anymore, with a performance
of less than 40% of levels solved. From these, we conclude
that A2CD can be used in different game configurations,
and can improve the learning efficiency.

o
IS

o
w

fraction of levels solved

o
[N}

—— A2C(50)
A2C(100)
—— A2C(200)
—— A2C(300)
—— A2CD
2

e
=

0.0 0.5 1.0 15 .0
steps 1le9

Figure 2. Learning curves of A2CD and A2C models with the
interruption length of 50, 100, 200, 300 steps in a 12 x 12 grid
world with 5 boxes.

3.4. Learning with a Gradually Increasing
Interruption Length

In Figure 3, we show the dynamic values of interruption
length of A2CD in the 12 x 12 grid world setting, where
the values are averaged for every 50000 steps. At the begin-
ning, the interruption length is uniformly distributed over
the interval, and its average is around 108. Then it descends
quickly to a low level and finally increases gradually to a
stable value. This result shows that the dynamic interruption
policy can automatically adapts to the performance of the
RL agent. More concretely, for the RL approach, the RL
agent is initially unaware of its environment and must learn
everything. Therefore, at the early stage of training, the
behavior of the RL agent approximates a random walk. This
means that the agent could only solve very simple tasks,
and for relatively difficult levels, it is very likely to be dead-
locked. So a small interruption length at the early training
stage is reasonable. With the agent’s performance growing
over time, a short interruption length may hinder the learn-
ing process of the episode with some difficulties (cf. A2C
model with the interruption length of 50 steps in Figure
2). This drives the interruption length to increase gradually.
With time goes by, the performance of the RL agent and
the interruption length will achieve a balance and remain
steady as shown in the late part of the curve in Figure 3. The
results above suggest that even when no prior information of
optimal interruption parameters exits, the proposed dynamic
interruption policy can still progress a healthy learning and
guarantee a good performance.

interruption length

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e9

Figure 3. The dynamic interruption length in Sokoban game play-
ing. The displayed results are averaged for every 50000 steps.
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4. Conclusion

In this work, we propose a dynamic interruption policy for
RL game playing. To achieve it, we have presented a newly
defined MSMAB model, which is a nonoblivious adversarial
MAB problem enriched by a cost component and a multi-
sampling process at each round. We present, analyze and
evaluate an algorithm named Exp3.P.MS for this new bandit
setting. The experimental results demonstrate that the pro-
posed A2CD model can achieve better performance than the
standard A2C method even in different game configurations.
Moreover, we show that the dynamic interruption length
is in a gradually increasing level of trialed steps, which
automatically adapts to the weak-to-strong performance of
the RL agent. So it can guarantee an efficient learning in
game playing tasks, even if no prior knowledge of optimal
parameter settings of the interruption length exists.
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