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Abstract
This paper deals with adversarial attacks on neu-
ral policy perceptions in a reinforcement learning
(RL) context. Classic approaches perform untar-
geted attacks on the state of the agent. Here, we
argue that it is more realistic to attack the observa-
tions provided by the environment rather than the
internal state computed by the agent. We propose
an untargeted attack over observations and show
that its effectiveness even holds when reduced to
a constant attack over observations. We also pro-
pose an approach to perform targeted attacks on
the observations of the agent, so that it acts as told
by an opponent policy. We illustrate this on deep
RL agents playing Space Invaders.

1. Introduction
Neural networks classifiers have been shown to be sensitive
to adversarial examples (Goodfellow et al., 2015; Carlini
& Wagner, 2017). These adversarial examples, whose exis-
tence was highlighted by Szegedy et al. (2013), have been
successfully applied in real-world situations (Athalye et al.,
2017; Brown et al., 2017), by either adding an impercepti-
ble noise or a reasonable-sized patch on an image. These
attacks are able to lure classifiers into predicting wrong la-
bels for an image initially correctly classified by attacking
the raw input image. In reinforcement learning (RL), end-
to-end systems have been trained to map visual inputs to
actions, successfully solving games like Atari (Mnih et al.,
2015; Hessel et al., 2018; Bellemare et al., 2013) or training
self-driving car policies (Bojarski et al., 2016). However,
the use of deep networks for visual input understanding in
end-to-end systems may lead these to face high sensitivity
to adversarial examples. Indeed, if an imperceptible pertur-
bation can mislead a classifier, then an agent, i.e. a policy
mapping images to actions, can be deceived the same way.

Huang et al. (2017) introduced adversarial examples in RL,
yet leaving aside its intrinsically dynamic nature. Indeed,
while supervised learning literature divides attacks into two
categories, such a dichotomy is not as that clear in the RL
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context. Dividing the possible scenarios into white-box and
black-box, i.e., having or not having access to the learning
algorithm and its parameters is, here, not that easy. Espe-
cially, previous work has focused on attacking the agent’s
state. We argue that doing so means modifying the internal
representations of the agent and that it is therefore more
realistic to attack only the observations given by the envi-
ronment, even in the white-box setting. Willing to design a
minimal attack, Lin et al. (2017) proposed a heuristic to re-
duce the number of attacked states and successfully reduced
this amount by four. We propose a single constant-attack to
be applied on all observations.

Moreover, the literature focused on untargeted or specialized
attacks (e.g. bringing the agent to a particular state). We
propose a targeted attack on the agent’s perception to spur
it to act as told by an opponent’s policy.

2. Preliminaries
In reinforcement learning, an agent interacts with an en-
vironment. Given a state space S and an action space A,
its (possibly stochastic) policy π is trained to maximize
the agent cumulative discounted reward over time. Value-
based algorithms (Mnih et al., 2015; Hessel et al., 2018) use
the value-function, or more frequently the quality-function
Q(s, a) to approximate the expected cumulative discounted
reward starting from state s and playing action a. Q is then
used to compute π. Deep RL (DRL) uses deep neural net-
works for function approximation. In value-based DRL, the
quality function Qω is parametrized with a neural network
of parameters ω, mapping continuous states to actions.

Adversarial examples have been introduced in the context
of supervised classification. Given a classifier C, an input x,
a bound ε on a norm ‖.‖, an adversarial example is a input
x′ = x + η such that C(x) 6= C(x′) while ‖x − x′‖ ≤ ε.
Fast gradient sign method is the most widespread method
for generating adversarial examples for the L∞-norm. From
a linear approximation of C, it computes the attack η as:

η = ε.sign(∇xl(θ, x, y)) (1)

with l(θ, x, y) the loss of the classifier and y the true label.

As an adversary, one wishes to maximize the loss l. Pre-
sented this way, it is an untargeted attack. It pushes
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C towards misclassifying x′ in any other label than y.
This can easily be turned into a targeted attack by taking
l(x) = − loss(θ, x, ytarget) with ytarget the label C is to
predict for x′. It can be easily be adapted to a L2 bound
by normalizing the gradient to ε. The method will thus be
referred to as the fast-gradient method (FGM). The choice
of the norm is important as it defines how we measure the
imperceptibility of the attack. We will focus on L∞ and L2

norms. The FGM can also be declined in iterative methods,
by taking several steps in the direction of the gradient, and
in momentum-based iterative methods by furthermore ad-
justing dynamically the gradient step. All these methods
will be referred to as gradient-based attacks.

When using deep networks to compute its policy, a RL
agent can be fooled the same way as a supervised clas-
sifier. For algorithms computing a stochastic policy π,
we take y, the true label, as the action predicted by the
network: y = argmaxa∈A π(a|s). The loss l from
Eq. (1) will then encourage the network not to have
the same output it had when not being attacked: l =
H(1{y=·}, π(.|s)) with H(p, q) = −

∑
x∈X p(x). ln(q(x))

In the case where the output policy is deterministic, e.g.
π(s) = argmaxa∈AQ(s, a), the same calculus would
lead to the gradient in Eq. (1) being zero almost every-
where. We thus take: l = H(1{y=·}, softmax(Q)) with
softmax(Q) = eQ(s,a)/

∑
a′∈A e

Q(s,a′).

In RL, as no true labels are available, an adversarial example
is either used in the untargeted case to change the initial
agent’s decision a or, in the targeted case, to encourage the
agent to take an action atarget chosen by an adversary.

3. Model
In Huang et al. (2017) the adversarial example framework
is directly used on the sequential decision making problem.
The FGM is applied to the network inducing the policy π,
for example the Q-network when π(s) = argmaxaQ(s, a)
or when π(.|s) is drawn from Q(s, .).

By doing so, the attack is built on the whole agent state. This
might seem like a reasonable hypothesis in the white-box
setting. Nonetheless, the state is an internal representation
to the agent. It might result from a complex preprocessing of
the raw perceptions given by the environment. For example,
when playing Atari games, classic RL algorithms use k = 4
consecutive observations as input state to ensure the Markov
property. Therefore deriving the loss l from Eq. (1) with
respect to the input state will give an attack on k observa-
tions rather than one image as it was the case in supervised
learning. Deploying this attack means having access to the
memory of the agent and modifying it. Attacking the inter-
nal representation of the agent is thus a technical obstacle
to the black-box setting where the opponent is conceptually

located between the environment and the agent. Moreover,
doing so may, depending on the implementation, break the
assumption that the norm of the attack is bounded by ε as
past observations are attacked several times. We thus wish
to build attacks on raw observations rather than complete
states and prove their efficiency.

We denote oi the ith observation and si the (unattacked) state.
It results from a preprocessing f of the past observations:
si = f(o1:i). We denote ηi the ith attack, õi = oi + ηi the
attacked observation and s̃i = f(õ1:i−1, oi) the state where
all observations but the last have been attacked. As we
wish to modify observations using gradient-based attacks,
we do not compute the gradient of l w.r.t. the input state
si, but only w.r.t. the last observation oi. By respecting
the property, our attacks are more easily deployable as they
consist in adding an imperceptible noise on observations,
and consistently respect the norm constraint ‖η‖ ≤ ε. We
consider the two problems of attacking an agent to make
its performance drop (untargated case) and of matching the
agent’s policy with a desired one (targeted case).

3.1. Untargeted attacks

We first focus on untargeted attacks where noise is added to
observations so as to make performance plunge. As stated
in Sec. 1, we design two untargeted attacks. First, the per-
frame attack: we compute a new attack for each frame and
apply it online. Second, the constant attack: we compute a
single attack and apply to all observations of the episode.

Per-frame attack: We study the effect of the following de-
signed attack: at each time step, either FGM or an iterative
method will be applied to the last seen observation in order
to change the decision that the agent would have taken. The
objective of the fast-gradient method can thus be reformu-
lated as maximizing over η, denoting a∗i ∈ argmaxQ(si, .),

KL
(
1{a=a∗i } ‖ π(.|f(õ1:i−1, oi + η))

)
s.t. ‖η‖ ≤ ε.

FGM, as iterative methods, can thus be seen as gradient
step(s) for maximizing the KL-divergence between policies.

This attack, though more reasonable considering that it at-
tacks only observations and not states, may still be unen-
forceable as computing a different attack online might be
computationally prohibitive for the opponent. We thus de-
sign a constant imperceptible attack that we will apply to
every frame as a mask.

Constant attack: We study the effect of this new type
of attacks: given an observed unattacked trajectory τ =
(o1, a1), ..., (oi, ai), ..., (oI , aI)), the opponent looks for η
minimizing:

I∑
i=1

lnP
(
ai = argmax

a
Q(f(o1:i−1, oi + η), a)

)
s.t. ‖η‖ ≤ ε.
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By replacing ∇l in Eq. (1) by the mean gradient over the
episode, we minimize the likelihood of the agent’s transi-
tions over a trajectory. The single constant additive mask
η = ε.sign(

∑
i∇xi

l(θ, xi, yi)) is then applied over all suc-
cessive frames.

While these attacks are designed to make the agent’s perfor-
mance drop, this might not be the only possible objective of
a malicious opponent. It may also try to control the played
policy. For this purpose we design targeted attacks.

3.2. Targeted case

We now consider again the per-frame attack scenario but
with a different objective. We do not want to bring the
performance of the agent down anymore, but to match its
policy with the one of the opponent: πop. We thus apply a
targeted attack on each observation to encourage the agent
to take the opponent’s preferred action. Denoting a∗,op ∈
argmaxπop(.|s), the loss l from Eq. (1) is now the opposite
and the optimized objective is to minimize over η:

KL
(
1{a=a∗,op} ‖ π(·|f(õ1:i−1, oi + η))

)
s.t. ‖η‖ ≤ ε.

4. Experiments
We test our attacks on both DQN and Rainbow playing
Space Invaders. We use the same preprocessing as in (Mnih
et al., 2015), with sticky actions (Machado et al., 2018). We
use trained policies (Such et al., 2018) for both DQN and
Rainbow and use them in evaluation mode : parameters of
the agents are left unchanged. Results are averaged over
five training seeds and over 5 episodes for each seed. Per-
formance is evaluated in terms of undiscounted cumulative
return over a complete episode. We adjust ε with the used
norm : when considering a norm ‖.‖ and an ε, we in fact
bound the attack as following : ‖η‖ ≤ ‖ε1‖. We attack
observations that are on the unnormalized 255 gray-scale.
The attack bounded by ε is thus also to be divided by 255.
Moreover, attacked observation are always clipped to 0-255
to keep them in the valid range. Fig. 1 shows the visual
impression of a norm L2 attack bounded by ε = 5.

4.1. Untargeted attack

Per-frame attack. We attack every frame of the episode,
just adding the computed noise on the current frame, never
attacking the whole state, and compare different attacks.

We observe on Fig. 2 and 3 that both DQN and Rainbow
are very sensitive to adversarial examples, even if we limit
ourselves to attacking observations and not complete state
inputs. We are able, with ε ≤ 0.1 to decrease the perfor-
mance of the agent by more than 50% and to reduce its

Figure 1. Left: the unattacked perception. Middle: the attacked
perception with = ε < 5. Right: the rescaled attack.
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Figure 2. Per-frame attacks on DQN.

performance to the one of a randomly-acting agent with
ε ≤ 0.2.

Simple FGM performs well in this untargeted case even
though momentum-based attack outperforms it. We also
observe that a gaussian noise attack limited by ε in norm
L∞ is not able to bring the performance of the agent down
as effectively.

Constant attack. We now test our constant attack. Results
are shown on Fig. 4 and 5. The attack computed by watch-
ing one episode, collecting the attacks over the trajectory
without applying them and then taking the mean attack re-
normalized to an ε norm. It is then constantly applied over
five episodes to test its mean effectiveness over an episode.

We observe that both algorithms show a high sensitivity to
constant attacks in norm-2 and that norm-inf attacks are
ineffective. With norm-2 bounded attacks, ε = 1 suffice to
reduce the performance of Rainbow to the one of a randomly
acting agent. It seems more sensitive than DQN, for which
a bigger ε (around 2) is needed to make the performance
drop to the one a randomly acting agent.
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Figure 3. Per-frame attacks on Rainbow.
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Figure 4. Constant attacks on DQN.

4.2. Targeted attack

We now consider again that we can compute a new attack
for each current frame. Our goal is to experimentally test
the hypothesis that the agent can be manipulated into acting
as a policy πop it was not computed for. We test that hypoth-
esis by taking a DQN trained agent and apply a per-frame
targeted attack. In our case, the considered attack will be
“helpful”: we are attacking DQN with the policy πop of
Rainbow whose results are higher on these tasks. The attack
at time step i is computed with ytarget = πop(si). DQN’s
behavior will thus be encouraged by adversarial examples
to follow Rainbow’s policy.

We observe on Fig. 6 that we are able to improve the per-
formance of DQN significantly by attacking with still very
small perturbations ε ≈ 1.5 and almost make it reach Rain-
bow’s mean performance on the game. We also observe that
in this targeted case, fast-gradient method is not enough. It
suffices to prevent a policy to take its preferred action but is
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Figure 5. Constant attacks on Rainbow.
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Figure 6. Targeted “helpful” per-frame attacks on DQN.

not precise enough to make it take a particular action.

Best returns are achieved when more than 95% of the taken
actions match with the opponent action, given by the Rain-
bow algorithm (Fig. 7). We push further this experience by
“helpfully” attacking an untrained version of DQN with a
Rainbow opponent and see if we can make it perform well
with only small perturbations of its perception.

As observed on Fig. 8, the task seems harder however with a
bigger ε, e.g. ε = 2.7, we reach the performance of a DQN
trained for 200 millions steps. As can be seen on Fig. 9,
more than 90% of the actions can be transformed to the
targeted action chosen by Rainbow. On a topological point
of view, this means that for both a trained or an untrained
network Q, if you consider the multi-class classifier C(.) =
argmaxaQ(s, .) then, for any s ∈ S, for ε of the order of
magnitude shown on Fig. 9, then the decision frontier of
every class cross the ball centered on s of radius ε.
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Figure 7. Targeted “helpful” per-frame attacks on DQN.
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Figure 8. Targeted “helpful” per-frame attacks on untrained-DQN.

5. Discussion & Conclusion
In the perspective of making machine learning safe, adver-
sarial examples (Szegedy et al., 2013) were introduced to
highlight weaknesses of deep learning. Several algorithms
were developed to produce adversarial examples rapidly
(Goodfellow et al., 2015) or as close to the original example
as possible (Carlini & Wagner, 2017). Defensive techniques
have been proposed like distillation (Papernot et al., 2016)
but other techniques (Carlini & Wagner, 2016) have proven
their effectiveness against them. Adversarial examples on
reinforcement learning are less studied. Previous work from
Huang et al. (2017) first tackled the issue but, as stated in
Sec. 3, the method attacked the whole agent’s state and
by that, added a strong assumption to the white-box setting.
The method also considered it could attack at every frame
the whole state with a new attack. We only attack observa-
tions, and designed new constant and targeted attacks. Lin
et al. (2017) first considered targeted attacks on agents how-
ever, they defined a unique objective, which is to bring the
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Figure 9. Targeted “helpful” per-frame attacks on untrained-DQN.

agent into a particular state. For this purpose, the algorithm
has to include a video prediction model. Their attack is
also only tested with the adversarial attack introduced in
Carlini & Wagner (2017), which is known to be slower than
fast-gradient method to compute as it requires to solve an
optimization problem. In the targeted case, we defined the
more general objective of matching the attacked policy with
a desired one. Concerning untargeted attacks to decrease
agent performance, the proposed method reach the same
performance as Huang et al. (2017) only attacking 25% of
the frames.

We designed new attacks applied directly on observations
for manipulating trained agents and proved their effective-
ness on classical RL algorithms playing Atari games. We
designed constant attacks, deployable in a real-world setting
by adding a constant mask to observations. We also intro-
duced targeted attacks to match the attacked policy with a
desired one and proved it was doable by only imperceptibly
attacking the observations. We focused on the white-box
setting but generalizing to the black-box scenario would be
done by training a new agent on the same task and transfer
the attack computed on this agent to the target agent. We
leave this scenario for future work.

Pinto et al. (2017) proposed an adversarial method for ro-
bust training of agents but considered only attack on the
dynamic of the environment, not on the visual perception of
the agent. Zhang et al. (2017); Ruderman et al. (2018) pro-
posed adversarial environment generation to study agent’s
generalization and worst-case scenarios.

As future work, we wish to build targeted attacks by con-
sidering the norm budget ε as a budget available across the
whole episode. This way, the opponent might either spare
its budget or decide to attack strongly when needed.
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