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Abstract
Counterfactual regret minimization (CFR) is
a framework of iterative algorithms and is
empirically the fastest approach to solving large
imperfect information games. However, for large
games, the convergence speed of the state-of-the-
art CFR is still the key limitation, especially in
real-time applications. We propose a novel coun-
terfactual regret minimization method with instant
updates, which has a provably lower convergence
bound and a provably tighter space complexity
bound. We apply the proposed instant updates
into many CFR variants on one Leduc Hold’em
instance and five different subgame instances
of Heads-Up No-Limit Texas Hold’em (HUNL)
generated by DeepStack. The proposed method
empirically achieves faster convergence rates than
the state-of-the-art CFR. In subgame instances of
HUNL, our method converges three times faster
than the hybrid method used in DeepStack.

1. Introduction
In recent years, many remarkable advances have been made
in addressing large perfect information games, such as
Go (Silver et al., 2016; 2017). However, solving Imperfect
Information Games (IIG) still remains a challenging problem.
In IIGs, a player has only partial knowledge about her
opponents before making a decision, so that she has to reason
under the uncertainty about her opponents’ information
while exploiting the other players’ uncertainty about herself.
Thus, IIGs provide more realistic modeling than perfect
information games for many real-world applications, such
as trading, traffic routing, and public auction. The typical
target of solving IIGs is to find a Nash equilibrium so that
no player can unilaterally improve her reward.

To solve IIGs, many algorithms have been designed to
approximately find Nash equilibrium. Linear programming
with realization plan representation (Koller & Megiddo,
1992) has traditionally been used to solve perfect-recall
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constant-sum IIGs. Such representation is linear in the num-
ber of nodes in the game tree but usually requires inverting
large matrix or other extremely expensive operation. Many
iterative techniques have been proposed as an alternative to
linear programming methods, such as gradient-based algo-
rithm (Gilpin et al., 2007), excessive gap technique (Kroer
et al., 2015) and regret minimization method (Gordon,
2007; Zinkevich et al., 2007). The widely used approaches
for solving large IIGs are the CFR variants (Zinkevich
et al., 2007; Lanctot et al., 2009; Tammelin, 2014; Brown
& Sandholm, 2018; Schmid et al., 2018; Li et al., 2018),
which minimize the overall counterfactual regret so that the
average strategies converge to Nash equilibria. Zinkevich
et al. (2007) uses CFR to solve the abstracted limit Texas
Hold’em with 1012 states, which is two orders of magnitude
larger than previous methods. To obtain a faster convergence,
Tammelin et al. (2015); Tammelin (2014) propose CFR+
and ultimately solve Heads-Up Limit Texas Holdem (HUL)
with CFR+ by 4800 CPUs and running for 68 days. Note
that, this game has over 1014 information sets and has been
a challenging problem for artificial intelligence over 10
years (Michael Bowling, 2015). Although great break-
throughs have been made, still Heads-Up No-Limit (HUNL)
Texas Hold’em still remains an open question, which has
more than 6×10161 information sets (Johanson, 2013) and is
much more difficult than HUL. Recently, Libratus (Brown &
Sandholm, 2017) and DeepStack (Moravcik et al., 2017) are
developed to solve the abstracted versions of HUNL using
CFR variants and continue resolving techniques. Because
the agents have to solve the subgames online using CFR
variants, to timely return the computed strategy profile, they
have to reduce the size of subgame by abstraction technique.

To make it possible to solve larger IIGs with more-refined
abstracted actions, a more efficient method is quite important
and necessary. Brown & Sandholm (2018) propose a faster
regret minimization method — DCFR — by discounting
both positive and negative cumulative regret. This work
won the honorable mention in AAAI 2019 and can achieve
the fastest convergence rate on many subgame instances of
HUNL empirically. In the experiment, we will compare our
method against this method.

In this paper, we propose a more efficient counterfactual
regret minimization method with instant updates technique.
We prove that our method has a lower convergence bound



Instant CFR for Imperfect Information Games

under the same proved computation memory constraint.
More importantly, many popular and state-of-the-art CFR
variants, such as original CFR (Zinkevich et al., 2007),
CFR+ (Tammelin, 2014; Michael Bowling, 2015) and
DCFR (Brown & Sandholm, 2018), can benefit from the
proposed instant updates. We test our method on Leduc
Hold’em and five different HUNL subgames generated by
DeepStack, the experiment results show that the proposed
instant updates technique makes significant improvements
against CFR, CFR+, and DCFR. In addition, we also prove
that the weighted average strategy by skipping previous itera-
tions can approach an approximate Nash equilibrium. In the
subgame instance of HUNL, the improved method converges
three times faster than the hybrid method used in DeepStack.

2. Background and Notation
2.1. Notations in Extensive-Form Game
We define the components of an extensive-form IIG follow-
ing (Osborne & Rubinstein, 1994; Li et al., 2018). N =
{0,1,...,n− 1} is a finite set and each member refers to a
player. We use hvi refer to the hidden variable of player i
in imperfect information game, which is unobserved by the
opponents. Each member h ofH denotes a possible history
(or state). For player i, hv−i refers to the opponent’s hidden
variables. If hj is a prefix of h, we can denote them by hjvh.
Z denotes the set of terminal histories and any member z∈Z
is not a prefix of any other sequences. A player function P
assigns a member of N ∪{c} to each non-terminal history,
where c denotes the chance player. In practice, we usually
define c = −1. P (h) is the player who takes actions after
history h. A(h) = {a : ha ∈H} is the set of available ac-
tions after non-terminal history h ∈H \Z. Ii of a history
{h ∈H : P (h) = i} is an information partition of player
i. A set Ii ∈ Ii is an information set of player i and Ii(h)
refers to information set Ii at state h. For Ii ∈ Ii, we have
A(Ii)=A(h) and P (Ii)=P (h). For each player i∈N , the
utility functionui(z) defines the payoff of the terminal state z.
If all players in one game can recall their previous actions and
the corresponding infosets, we call it a perfect-recall game.

2.2. Definition of Strategy and Nash equilibrium
For play i ∈ N , the strategy σi(Ii) in an extensive-form
game assigns an action distribution overA(Ii) to information
set Ii. A strategy profile σ = {σi|σi ∈ Σi, i ∈ N} is a
collection of strategies for all players, where Σi is the set
of all possible strategy profiles for player i. σ−i refers to all
strategies in σ expect σi. σi(Ii) is the strategy of information
set Ii. σi(a|h) denotes the probability of action a taken
by player i ∈N ∪{c} at state h. In imperfect information
game, ∀h1∈ Ii and ∀h2∈ Ii , we have Ii= Ii(h1)= Ii(h2),
σi(Ii) = σi(h1) = σi(h2), σi(a|Ii) = σi(a|h1) = σi(a|h2).
For iterative learning method such as CFR, σt refers to the
strategy profile at t-th iteration. The state reach probability
of history h is denoted by πσ(h) if players take actions

according to σ. For an empty sequence, πσ(a0)=πσ(∅)=1.
The reach probability can be decomposed into
πσ(h) =

∏
i∈N∪{c}π

σ
i (h) =πσi (h)πσ−i(h), where πσi is the

product of player i′s contribution andπσ−i is the product of all
players’ contribution except player i. The information set
reach probability of Ii is defined by πσ(Ii)=

∑
h∈Iiπ

σ(h).
For player i, the expected game utility of a strategy profile
σ is the expected payoff of all possible terminal nodes, i.e.,
uσi =

∑
z∈Zπ

σ(z)ui(z). Given a fixed strategy profile σ−i,

any strategy σ∗i = argmaxσ′i∈Σi u
(σ′i,σ−i)
i of player i that

achieves optimal payoff against πσ−i is a best response.
An ε-Nash equilibrium is an approximation of a Nash
equilibrium, whose strategy profile σ∗ satisfies: ∀i ∈ N ,

u
(σ∗i ,σ−i)
i + ε ≥ maxσ′i∈Σi

u
(σ
′
i ,σ−i)

i . Exploitability of a

strategy σi is defined by εi(σi) = uσ
∗

i − u
(σi,σ

∗
−i)

i . If the
players alternate their positions in two-player zero-sum IIG,
the value of a pair of games is zeros, i.e., uσ

∗

0 + uσ
∗

1 = 0.
Therefore, we can define the exploitability of a strategy

profile σ by ε(σ)=
u
(σ0,σ

∗
1 )

1 +u
(σ∗0 ,σ1)

0

2 .

3. Method and Theory
In this section, we will present a novel regret minimization
method with an efficient instant updates technique. Then
we give the theoretical bound for this novel method. After
that, we present another regret minimization method with
skipping mechanism and prove its bound. At last, we talk
about several hybrid methods of current CFR variants and
the proposed instant updates.
3.1. Instant Counterfactual Regret Minimization
CFR variants (Zinkevich et al., 2007; Lanctot et al., 2009;
Brown & Sandholm, 2017; Moravcik et al., 2017) update
counterfactual value recursively along the game tree and min-
imize the overall regret. Our method also minimizes the over-
all regret. Different from original CFR variants, we define
a novel instant counterfactual value recursively as follows.

Given the children’s instant counterfactual value sσ
t

i (a|Ii)
of information set Ii, its dummy counterfactual value is
defined by

ŝσ
t

i (Ii)=
∑

a∈A(Ii)

σti(a|Ii)sσ
t

i (a|Ii). (1)

Specifically, the leaf nodes’ instant counterfactual values
are the same as their utility values. Then the instant regret
of taking action a at information set Ii will be

q̂σ
t

i (a|Ii)=sσ
t

i (a|Ii)−ŝσ
t

i (Ii). (2)

The cumulative instant regret is the rectified summation of
total instant regret, which is defined by

Qti(a|Ii)=max(Qt−1
i (a|Ii)+q̂σ

t

i (a|Ii),0) (3)
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Then we update the behavior strategy σt+1
i (a|Ii) by

σT+1
i (a|Ii)=


Qti(a|Ii)∑

a∈A(Ii)
Qti(a|Ii)

if
∑
a∈A(Ii)

Qti(a|Ii)>0

1
|A(Ii)| otherwise.

(4)
After that, instant counterfactual value sσ

t

i (Ii) of information
set Ii is defined by

sσ
t

i (Ii)=
∑

a∈A(Ii)

σt+1
i (a|Ii)sσ

t

i (a|Ii). (5)

Now, we finish the recursive definition of instant counter-
factual value and cumulative instant regret. Note that, the
definition of counterfactual value in our method is different
from the previous CFR variants (Zinkevich et al., 2007;
Tammelin, 2014; Moravcik et al., 2017; Brown & Sandholm,
2018). In our method, after obtaining the children’s instant
counterfactual value of Ii, we use its behavior strategy to
compute its dummy counterfactual value and update its
cumulative instant regret. After that, we update its behavior
strategy instantly by regret matching+ (Tammelin, 2014).
Finally, we use the updated behavior strategy to update its
instant counterfactual value. In previous CFR variants, the
counterfactual value is only updated by the old behavior
strategy rather than the latest behavior strategy.

The average strategy σ̄iT from iteration 1 to T is defined by

σ̄i
T (a|Ii)=

∑T
t=1π

σt

i (Ii)σ
t
i(a|Ii)∑T

t=1π
σt
i (Ii)

, (6)

where πσ
t

i (Ii) denotes the information set reach probability
of Ii at t-th iteration and is used to weight the corresponding
current strategy σti(a|Ii).

Because the counterfactual value is updated instantly by
the latest behavior strategy, we name our method as Instant
Counterfactual Regret minimization (ICFR).

3.2. Theoretical Analysis of ICFR
In this section, we will prove the convergence for the
proposed ICFR method as presented in Theorem 3. It can
guarantee ICFR converge to a Nash equilibrium with a lower
bound of the CFR.
Theorem 1 (Theorem 2 in Zinkevich et al. (2007), Theorem
1 in Brown & Sandholm (2016)) In a two-player zero-sum
perfect-recall IIG at iteration T , ∀i ∈ N , if the bound of
average overall regret is εi, then σ̄T is a ε0 + ε1-Nash
equilibrium.

Before we prove the bound, we should prove Lemma 1 and
Lemma 2.
Lemma 1 ∀σ′−i ∈ Σ−i, ∀Ii ∈ Ii, and ∀a ∈ A(Ii),∑
a∈A(Ii)

Qt−1
i (a|Ii)q̂

(σti ,σ
′
−i)

i (a|Ii)=0

We can prove Lemma 1 in the same way as Lemma 14 in
Burch (2017). Although these two Lemmas have different
definitions of counterfactual value, they hold similar
property. The proved Lemma 1 holds for any σ′−i∈Σ−i and
is more general than the previous proof.

Proof∑
a∈A(Ii)

Qt−1
i (a|Ii)q̂

(σti ,σ
′
−i)

i (a|Ii)

=
∑

a∈A(Ii)

Qt−1
i (a|Ii)

(
s

(σti ,σ
′
−i)

i (a|Ii)−ŝ
(σti ,σ

′
−i)

i (Ii)

)

=
∑

a∈A(Ii)

Qt−1
i (a|Ii)

(
s

(σti ,σ
′
−i)

i (a|Ii)−
∑

b∈A(Ii)

s
(σti ,σ

′
−i)

i (b|Ii)σti(b|Ii)
)

=
∑

a∈A(Ii)

Qt−1
i (a|Ii)s

(σti ,σ
′
−i)

i (a|Ii)

−
∑

a∈A(Ii)

Qt−1
i (a|Ii)

∑
b∈A(Ii)

s
(σti ,σ

′
−i)

i (b|Ii)
Qt−1
i (b|Ii)∑

c∈A(Ii)
Qt−1
i (c|Ii)

=
∑

a∈A(Ii)

Qt−1
i (a|Ii)s

(σti ,σ
′
−i)

i (a|Ii)

−
∑

b∈A(Ii)

s
(σti ,σ

′
−i)

i (b|Ii)Qt−1(b|Ii)
∑
a∈A(Ii)

Qt−1
i (a|Ii)∑

c∈A(Ii)
Qt−1
i (c|Ii)

=0
(7)

Lemma 2 Define L = maxIi,a,t |q̂t(a|Ii)|.∀Ii ∈ I, a ∈
A(Ii),t∈ [1,T ], we haveQT (a|Ii)≤L

√
|A|T .

Proof According to Lemma 1, we can prove∑
a∈A(Ii)

QTi (a|Ii)2≤
∑

a∈A(Ii)

(
QT−1
i (a|Ii)+q̂T (a|Ii)

)2

≤
∑

a∈A(Ii)

(
QT−1
i (a|Ii)2+q̂t(a|Ii)2

)
+2

∑
a∈A(Ii)

QT−1
i (a|Ii)q̂T (a|Ii)

≤
∑

a∈A(Ii)

QT−1
i (a|Ii)2+

∑
a∈A(Ii)

q̂T (a|Ii)2

≤
T∑
t=1

∑
a∈A(Ii)

q̂t(a|Ii)2≤
T∑
t=1

∑
a∈A(Ii)

L2≤T |A|L2

(8)

Therefore, we haveQT (a|Ii)≤L
√
|A|T .

After that, we can prove the average overall regret of ICFR
by Theorem 2.
Theorem 2 Define K = minIi∈Ii

(
sσ

t

i (Ii) − ŝσ
t

i (Ii)
)

.
Define average overall regret of player i at iteration T by

QTi =
1

T
max
σ∗i ∈Σi

T∑
t=1

(
u

(σ∗i ,σ
t
−i)

i −u(σti ,σ
t
−i)

i

)
, (9)

thenQTi ≤|Ii|(L
√
|A|/
√
T−K).
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Proof
Define ∆Ix(Ii) as the incrementally reachable information
sets after player i taking x−th action from information set Ii.
Note that, ∆Ix(Ii) doesn’t contain the additionally visited
information sets after player i taking x−1 actions from Ii.
If these information sets are reached after taking action a∈
A(Ii), the set of incrementally reachable information sets is
defined by ∆Ix(a|Ii). Define Ix(Ii)=Ix−1(Ii)+∆Ix(Ii),
where x is the depth of the subgame tree with root Ii and
D(Ii) is the maximum depth. |I0(Ii)|=1. Defineσ(Ii→σ′)
as a strategy profile identical to σ except that player i always
select action by σ′ at Ii. Specifically, σ(Ii→a) refers to that
player i always selects action a at Ii. According to the defini-
tion, we have sσ(Ii→a)

i (Ii) =
∑
I′i∈∆I1(a|Ii)s

σ
i (I ′i). Define

QTi (Ii) = 1
T maxσ′∈Σi

∑T
t=1

(
s
σt(Ii→σ′)
i (Ii) − sσ

t

i (Ii)
)

,
then we have

QTi (Ii)

=
1

T
max
σ′∈Σi

max
a∈A(Ii)

T∑
t=1

 ∑
I′i∈∆I1(a|Ii)

s
σt(Ii→σ′)
i (I ′i)−sσ

t

i (Ii)


=

1

T
max
σ′∈Σi

max
a∈A(Ii)

T∑
t=1

(
s
σt(Ii→a)
i (Ii)−sσ

t

i (Ii)

+
∑

I′i∈∆I1(a|Ii)

(
s
σt(Ii→σ′)
i (I ′i)−sσ

t

i (I ′i)
))

=
1

T
max
a∈A(Ii)

T∑
t=1

(
s
σt(Ii→a)
i (Ii)−sσ

t

i (Ii)

)

+
1

T
max
σ′∈Σi

max
a∈A(Ii)

1

T

T∑
t=1

( ∑
I′i∈∆I1(a|Ii)

(
s
σt(Ii→σ′)
i (I ′i)−sσ

t

i (I ′i)
))

(10)

According to Theorem 2 in (Burch et al., 2018), we have sσ
t

i (Ii)≥
ŝσ
t

i (Ii). Define ∆S(Ii)=sσ
t

i (Ii)−ŝσ
t

i (Ii). Then we have

QTi (Ii)

≤ 1

T
max
a∈A(Ii)

T∑
t=1

(
s
σt(Ii→a)
i (Ii)−ŝσ

t

i (Ii)−∆S(Ii)

)
+ max
a∈A(Ii)

∑
I′i∈∆I1(a|Ii)

QTi (I ′i)

≤ 1

T
max
a∈A(Ii)

T∑
t=1

(
s
σt(Ii→a)
i (Ii)−ŝσ

t

i (Ii)−∆S(Ii)

)
+

∑
I′i∈∆I1(Ii)

QTi (I ′i)

(11)

It is clear that equation 11 provides a recursive definition between
QTi (Ii) and its children’sQTi (I ′i). We can derive that

QTi (Ii)≤
1

T

∑
I′i∈I

D(Ii)
i (Ii)

max
a∈A(Ii)

T∑
t=1

(
s
σt(Ii→a)
i (Ii)−ŝσ

t

i (Ii)−K

)
(12)

According to Lemma 2, we have

QTi ≤
1

T
|Ii|(L

√
|A|T−TK)≤|Ii|(L

√
|A|/
√
T−K) (13)

Theorem 3 In a two-player zero-sum perfect-recall game at
iterationT , ICFR approaches a |I|(L

√
|A|/
√
T−K)-Nash

equilibrium.

Proof According to Theorem 1, in a two-player zero-sum
game at iteration T , if ∀i ∈ N , the bound of average
overall regret is εi, then σ̄T is a ε0 + ε1 equilibrium.
According to Lemma 2, QTi (Ii)≤ |Ii|(L

√
|A|/
√
T −K),

and |I0| + |I1| = |I|, therefore ICFR approaches a
|I|(L

√
|A|/
√
T−K)-Nash equilibrium.

3.3. Space Complexity
In this section, we give the space complexity of the proposed
ICFR in Theorem 4. Note that ICFR has the same space
complexity as original CFR and CFR+.

Theorem 4 Define Ii v Z if h ∈ Ii, h v z. When per-
forming CFR (Zinkevich et al., 2007) with simultaneous
updates and the proposed instant updates, it requires
2
∑
i∈N,Ii∈Ii |A(Ii)| + 2 maxi∈N

∑
IivZ |A(Ii)| space.

Similarly, when using alternating updates, it requires
2
∑
i∈N,Ii∈Ii |A(Ii)|+maxi∈N

∑
IivZ |A(Ii)| space.

(Burch, 2017) proved the space complexity for CFR
and CFR+, who require 3

∑
i∈N,Ii∈Ii |A(Ii)| space and

2(
∑
i∈N,Ii∈Ii |A(Ii)|+maxi∈N |Ii|) space respectively ac-

cording to the Theorem 5 and Theorem 10 in Burch (2017).
The presented bound is tighter than those in Burch (2017).

4. Hybrid CFR Variants
4.1. Skipping Mechanism

When performing CFR, we initialize the cumulative regret
by zero, therefore the behavior strategy starts from a uniform
random strategy. The average of behavior strategy profiles
within all iterations will converge to a Nash equilibrium. The
weighted average of iterative behavior strategy in previous
iterations is highly exploitable. It is quite natural to ask
a question that whether the average strategy by skipping
the previous iteration can approach an approximate Nash
equilibrium and obtain a better performance.

Although the similar technique is used in DeepStack (Morav-
cik et al., 2017), they don’t prove its theoretical convergence.
In this section, we prove the theoretical bound of this
skipping mechanism.

Theorem 5 Suppose we weight average strategy by skipping
the first Ts iterations. Define E = Ts

T , where 0≤ Ts≤ T .

Define K = minIi∈Ii

(
sσ

t

i (Ii)− ŝσ
t

i (Ii)
)

. In a two-player
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zero-sum IIG at iteration T , ICFR with skipping mechanism

approaches a |I|(L
√
|A|/
√
T−K)+2LE

1−E -Nash equilibrium.

Proof Define

σ∗=
1

T
argmax
σ∗i ∈Σi

T∑
t=Ts

(
u

(σ∗i ,σ
t
−i)

i −u(σti ,σ
t
−i)

i

)
, (14)

Q1:T
i =

1

T

T∑
t=1

(
u

(σ∗i ,σ
t
−i)

i −u(σti ,σ
t
−i)

i

)
, (15)

According to the Theorem 2, we have Q1:T
i ≤

|Ii|(L
√
|A|/
√
T−K). According to the definition, we have

Q1:T
i ≥−LE+

1

T

T∑
t=Ts+1

(
u

(σ∗∗i ,σt−i)

i −u(σti ,σ
t
−i)

i

)
(16)

where

σ∗∗i =argmax
σ∗∗i ∈Σi

T∑
t=Ts+1

(
u

(σ∗∗i ,σt−i)

i −u(σti ,σ
t
−i)

i

)
(17)

Therefore, we have QTs:Ti ≤ |Ii|(L
√
|A|/
√
T−K)+LE

1−E .
According to Theorem 1, ICFR with skipping mechanism

approaches a |I|(L
√
|A|/
√
T−K)+2LE

1−E -Nash equilibrium.

According to the Theorem 5, ifE→0, that is, Ts= 0, then
the bound is same with Theorem 3. Empirically, the method
with skipping mechanism approaches to an approximated
Nash equilibrium more efficiently.

4.2. ICFR Variants

There are many popular CFR variants, such as CFR (Zinke-
vich et al., 2007), CFR+ (Tammelin, 2014) and
DCFR (Brown & Sandholm, 2018).

CFR+ (Tammelin, 2014) is similar to CFR but has three
differences. First, CFR+ uses regret-matching+ in place of
regret matching and is more efficient than CFR empirically.
Second, CFR+ uses alternating updates for only one player’s
cumulative strategy and another one’s cumulative regret
in each iteration, while CFR uses simultaneously updates
for both players’ cumulative strategy and regret. Third,
CFR+ weights each current strategy by t rather than uniform
distribution. Similarly, we use regret matching+ (Tammelin,
2014) rather than regret matching (Zinkevich et al., 2007),
because regret matching+ has a better performance empir-
ically. If we use regret matching+ in instant counterfactual
regret minimization, we can name it by ICFR+.

Discounted CFR (DCFR) (Brown & Sandholm, 2018) is
a general version of CFR and CFR+ by discounting both
cumulative regret and average strategy. In DCFR(α,β,γ), the
accumulated positive regrets are discounted by tα/(tα+1),
the accumulated negative regrets are discounted by
tβ/(tβ + 1), and contributions to the average strategy
are discounted by (t/(t + 1))γ in t-th iteration. α, β, γ
are the parameters in DCFR. DCFR can obtain a better
convergent strategy than both CFR and CFR+ in many games
empirically after specifying suitable parameters although
the proved bound is larger than CFR. When we apply the
proposed instant updates into DCFR, we obtain IDCFR
algorithm. Similarly, if we use regret matching+ technique
to compute behavior strategy, we obtain IDCFR+ algorithm.

In the experiment, we will give a detailed comparison for
these different methods.

5. Experiment
We evaluated the proposed method on several different
game instances: a widely-used Leduc Hold’em and five
subgames of Heads-Up No-limit Texas Hold’em generated
by DeepStack. The experiments cover all kinds of subgames
presented in DeepStack (Moravcik et al., 2017). To reduce
the randomness, we repeated each experiment for 30
times with random board and reach probability. All the
experiments are evaluated by exploitability. Note that, a
lower exploitability indicates better performance.

5.1. Data Sets and Game Rules
Leduc Hold’em is a two-player imperfect information game
of poker and is first introduced by Southey et al. (2012). The
game contains a deck of 6 cards comprising two suits of
three ranks. The player may raise any amount of chips up
to a maximum of that player’s remaining stack. There is
also no limit to the number of raises or bets in each betting
round. The game has at most two rounds. In the first betting
round, each player is dealt one card from a deck of 6 cards.
In the second betting round, a community (or public) card
is revealed from a deck of the remaining 4 cards.

Heads-up no-limit Texas hold’em (HUNL) has at most four
betting rounds if neither of two players fold in advance. The
four betting rounds are named by preflop, flop, turn, and
river respectively. The version of HUNL we used in this
paper is based on the standard of Annual Computer Poker
Competition (ACPC). This version is widely used as a large
data set of imperfect information game (Moravcik et al.,
2017; Brown & Sandholm, 2017). Initially, both two players
have 20000 chips. At the start of each hand, both players are
dealt two private cards from a 52-card deck. After the preflop
round, three public cards are revealed face-up on the table
and the flop betting round occurs. After this round, another
public card is dealt and the third betting round (called turn
round) takes place. After that, the last public card is revealed,
then the river round begins.
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(a) Leduc Hold’em
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(b) River(5k)
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(c) River(500)

Figure 1: Convergence on (a) Leduc Hold’em (b) River(5k), and (c) River(500). It’s clear that with the help of instant updates,
all these methods converge faster than their original version. On Leduc Hold’em, CFR+ has a better performance than DCFR.
Both the proposed ICFR+ and IDCFR+ perform better than the state-of-the-art methods. On River(5k) and River(500),
IDCFR+ has a better improvement than state-of-the-art methods.

In this paper, we evaluate our methods on five subgames
of HUNL produced by the DeepStack poker AI. We cover
all the subgames presented in DeepStack paper (Moravcik
et al., 2017). Specifically, Preflop(5k),Flop(5k), Turn(5k),
River(5k) and River(500) are subgames of HUNL generated
by DeepStack. The starting pot sizes for the first four
subgames are 5k and the last one is 500. Note that, as the
paper of DeepStack said, the terminal values of Preflop(5k)
and Flop(5k) are predicted by the counterfactual value
networks. The actions used to build subgames are listed
in Table S3 (Moravcik et al., 2017). The exploitability is
computed on each subgame. Both subgames begin at the
start of the river betting round and continue to the end of the
game. The start pot size of the first subgame is 500 chips and
the second subgame is 5000 chips.

In this paper, we use exploitability to evaluate the perfor-
mance of different methods. It’s clear that the method who
can obtain a lower exploitability within a specified iteration
will be better.

5.2. Comparison Results
When performing CFR, there are two different update
methods: simultaneous method and alternating method. Em-
pirically, the alternating method converges more efficiently
than simultaneous method (Tammelin, 2014; Brown & Sand-
holm, 2018). In this paper, we use the alternating-updates
technique on all experiments. We compared the proposed
methods with the original CFR (Zinkevich et al., 2007) and
the state-of-the-art methods, including CFR+ (Tammelin,
2014), DCFR (Brown & Sandholm, 2018) and hybrid
CFR+ (Moravcik et al., 2017). Note that, these methods
often have different performance on different game instances.
Because DCFR had three different parameters, we selected
these parameters by sweeping technique. Specifically,
α ∈ [0.5,1.0,1.5,2.0,2.5], β ∈ [−∞,0,0.5,1.0,1.5,2.0,2.5],
and γ ∈ [1, 2, 3, 4]. In addition, we also applied regret
matching and regret matching+ (Tammelin, 2014) into

DCFR respectively. These two versions were denoted by
DCFR and DCFR+ respectively.

On Leduc Hold’em poker instance, Figure 1 (a) shows
that CFR+ outperformed DCFR and became the strongest
benchmark. With the help of the proposed instant updates,
both CFR+ and IDCFR+ obtained significant improvement
and converged more efficiently than the counterpart. On
the subgame instances of HUNL, Figure 1 (b) and (c) shows
that DCFR outperformed CFR+ and became the strongest
benchmark. The proposed instant updates technique also
provided a significant improvement against DCFR. When
combining the proposed instant updates with the proved
skipping mechanism, all of these methods converge more
efficiently. Figure 2 shows that the improved IDCFR by
skipping half previous iterations converges three times faster
than the hybrid method used in DeepStack. In Figure 2 (b),
the exploitability of IDCFR+Half between 500 and 580
iterations was larger than IDCFR+ and after 580 iterations its
exploitability became lower than IDCFR+. It was reasonable
because only the average strategy over a large number of
iterations can approach an approximate Nash equilibrium
according to the proved Theorem 5.

In practice, an exploitability of 1 mbb/g 1 is considered
sufficiently converged (Michael Bowling, 2015). Thus,
the performance of the presented algorithms between 100
and 1000 iterations is arguably more important than the
performance beyond 10000 iterations (Moravcik et al., 2017;
Brown & Sandholm, 2018). To demonstrate the performance
of the proposed instant updates after long iterations, we list
the performance in Table 1 for CFR and DCFR after 10k
iterations. Because the performance of CFR+ and DCFR+
are much better than CFR and hybrid CFR+ empirically, we
only present the performance of long iterations for CFR+
and DCFR. It’s clear that instant updates technique helps
both CFR+ and DCFR perform better than the counterpart.

1 mbb/g refers to millibig blinds per game.
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Figure 2: (a) Convergence on River(5k) for different methods by skipping half iterations. All of these methods obtain better
performance with the proved skipping mechanism. (b) Convergence on River(5k) for IDCFR+ by skipping different iterations.
Empirically, skipping the previous 500 or 600 iterations can obtain the best performance.

Table 1: Long-running performance after 10k iterations

Game #infoset #state CFR+ ICFR+ DCFR IDCFR+
Leduc 1.1e4 6.1e4 2.9e−5±1.8e−7 2.3e−5±1.7e−7 3.5e−5±4.0e−7 3.1e−5±1.6e−7
Preflop(5k) 1.6e4 2.1e7 4.5e−4±4.7e−8 3.3e−4±9.6e−9 3.0e−5±1.5e−9 9.1e−6±9.7e−9
Flop(5k) 2.4e4 3.2e7 8.2e−3±1.2e−5 2.5e−3±5.6e−6 1.7e−3±3.6e−6 7.3e−4±3.8e−6
Turn(5k) 1.7e6 2.2e9 1.9e−2±3.6e−4 1.8e−2±9.5e−5 7.7e−3±7.6e−5 7.2e−3±5.5e−5
River(5k) 2.4e6 3.2e7 1.0e−2±1.8e−5 3.9e−3±6.0e−5 2.2e−3±3.7e−5 1.6e−3±2.0e−5
River(500) 1.6e5 2.1e7 3.4e−3±3.3e−5 2.2e−3±2.1e−5 1.3e−3±2.5e−5 1.1e−3±3.5e−5

6. Conclusion
We have proved that counterfactual regret minimization
with the proposed instant updates has a lower convergence
bound. This instant updates can significantly improve the
state-of-the-art method. We also have proved that weighted
average strategy by skipping previous iterations approaches
an approximate Nash equilibrium and helps our methods
obtain a faster convergence empirically. Finally, we proved
that the proposed methods have the same space complexity
with CFR and the proved bound is much tighter than the
proof in the previous work.
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