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Abstract

We study the problem of learning sequential
decision-making policies in settings with mul-
tiple state-action representations. Such settings
naturally arise in many domains, such as plan-
ning (e.g., multiple integer programming formu-
lations) and various combinatorial optimization
problems (e.g., those with both integer program-
ming and graph-based formulations). Inspired by
the classical co-training framework for classifica-
tion, we study the problem of co-training for pol-
icy learning. We present sufficient conditions un-
der which learning from two views can improve
upon learning from a single view alone. Mo-
tivated by these theoretical insights, we present
an algorithm for co-training for sequential deci-
sion making. Our framework is compatible with
both reinforcement learning and imitation learn-
ing. We validate the effectiveness of our ap-
proach on a challenging class of combinatorial
optimization problems: minimum vertex cover.

1. Introduction

A common wisdom in problem solving is that there is more
than one way to look at a problem. For sequential de-
cision making problems, such as those in reinforcement
learning and imitation learning, one can often utilize multi-
ple different state-action representations to characterize the
same problem. A canonical application example is learning
solvers for hard optimization problems such as combinato-
rial optimization (1; 2; 3; 4; 5; 6). It is well-known in the
operations research community that many combinatorial
optimization problems have multiple formulations. Promi-
nent examples include the maximum cut problem where
one can describe with a quadratic integer problem as well
as a linear integer program (7; 8). Another example is
the travelling salesperson problem, which admits multiple
integer programming formulations (9; 10). One can also
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formulate many problems using a graph-based representa-
tion (see Figure 1). Beyond learning combinatorial opti-
mization solvers, other examples with multiple state-action
representations include robotic applications with multiple
sensing modalities such as third-person view demonstra-
tions (11) and multilingual machine translation (12).

In the context of policy learning, one natural question
is how different state-action formulations impact learning
and, more importantly, how learning can take advantage
of multiple formulations. The multiple formulation sce-
nario is related to the co-training problem (13; 14), where
different feature representations of the same problem en-
able more effective learning compared with using only a
single representation (15; 16). While co-training has re-
ceived much attention in classical tasks such as classifica-
tion, little effort has been made on applying it to sequential
decision making problems. One immediate consequence
considering the sequential case is that some settings have
completely separate state-action representations while oth-
ers can share the action space.

In this paper, we propose COPIEr (co-training for policy
learning), a framework for policy co-training that can in-
corporate both reinforcement learning and imitation learn-
ing as subroutines. Our approach is based on a novel the-
oretical result that integrates and extends results from gen-
eral policy learning with demonstrations (17). To the best
of our knowledge, we are the first to formally extend the
co-training framework to policy learning.

Our contributions can be summarized as:

e We present a formal theoretical framework for policy
co-training. We provide a general theoretical char-
acterization of policy improvement. This theoretical
characterization sheds light on a rigorous algorithm
design for policy learning that can appropriately ex-
ploit multiple state-action representations.

e We present COPIEr (co-training for policy learning),
an algorithm for policy co-training that is based on the
theoretical analysis.

e We empirically evaluate on a challenging combinato-
rial optimization problems: minimum vertex cover.
We showcase the practicality of our approach by
demonstrating superior performance compared to a
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x; €{0,1},Vi e {1,--- ,5}

Figure 1. Two ways to encode minimum vertex cover (MVC)
problems. Left: policies learn to operate directly on the graph
view to find the minimal cover set (18). Right: we express MVC
as an integer linear program, then polices learn to traverse the
resulting combinatorial search space, i.e., learn to branch-and-
bound (1; 5).

wide range of strong learning-based benchmarks as
well as commercial solvers such as Gurobi.

2. Related Work

Co-training Our work is inspired by the classical co-
training framework for classification (13), which utilizes
two different feature representations, or views, to effec-
tively use unlabeled data to improve the classification ac-
curacy. Subsequent extensions of co-training includes co-
EM (19) and co-regularization (20). Co-training has been
widely used in natural language processing (15; 21), clus-
tering (16; 22), domain adaptation (23) and game playing
(24). For policy learning, some related ideas have been
explored where multiple estimators of the value or critic
function are trained together (25; 26).

Policy Learning for Sequential Decision Making Se-
quential decision making pertains to tasks where the pol-
icy performs a series of actions in a stateful environment.
A popular framework to characterize the interaction be-
tween the agent and the environment is a Markov Decision
Process (MDP). There are two main approaches for pol-
icy learning in MDPs. The first is reinforcement learning,
which uses the observed environmental rewards to perform
policy optimization. Recent work include Q-Learning ap-
proaches such as deep Q-Networks (27), as well as policy
gradient approaches such as DDPG (28), TRPO (29) and
PPO (30). Despite its successful applications to a wide va-
riety of tasks including playing games (27; 31), robotics
(32; 33) and combinatorial optimization (2; 4; 3), high sam-
ple complexity and unstable learning pose significant chal-
lenges in practice (34).

The second approach, imitation learning, uses demon-
strations (from an expert) as the primary learning sig-
nal. One popular class of algorithms is reduction-based
(35; 36; 37; 38; 39), which generates cost-sensitive super-
vised examples from demonstrations. Other approaches in-
clude estimating the expert’s cost-to go (40), inverse re-
inforcement learning (41; 42; 43), and behavioral cloning
(44). Recent works have also explored on how to combine
these two types of learning (45; 17; 46; 47). One major
limitation of imitation learning is the reliance on demon-
strations for reliable learning. For both imitation learning
and reinforcement learning, we show that co-training on
two views can provide surrogate demonstrations in the for-
mer and improved exploration in the latter, in both cases
leading to superior performance.

3. Background & Preliminaries

Markov Decision Process with Two State Representa-
tions. A Markov decision process (MDP) is defined by
a tuple (S, A, P,r,v,Sr). Let S denote the state space,
A the action space, P(s'|s, a) the (probabilistic) state dy-
namics, r(s,a) the reward function, v the discount factor
and (optional) S a set of terminal states where the de-
cision process ends. We consider both stochastic and de-
terministic MDPs. An MDP with two views can be writ-
ten as M4 = (S4 A4, PA rA, 44, 84) and MP =
(8B, AB PB B ~B SE). To connect the two views, we
make the following assumption about the ability to trans-
late trajectories between the two views.

Assumption 1. For a (complete) trajectory in M4, 74 =

(si',adt, st aft, -+ s2), there is a function fa_,p such
that fa_g(t4) = 78 = (sE,al,sP,aP,--- |sB)isa

(complete) trajectory in MPB. And rewards for 7 and
7B are the same under their respective reward functions,

n— m—1

ie, Y ri(sta) = Y rB(sP,aP). Similarly, there
i=0 §=0

is also a function fp_, 4 that maps trajectories in MPF to

MA which preserves the total rewards. Moreover, fa_,p

and fp_, 4 are the inverse maps of each other.

Combinatorial Optimization Example. Minimum ver-
tex cover (MVC) is a classical combinatorial optimization
defined over a graph G = (V, E). A cover set is defined as
asubset U C V such that every edge e € F is incident to at
least one v € U. The objective is to find a U with minimal
cardinality. For the graph in Figure 1, a minimal cover set
is {2,3,4}.

There are two natural ways to represent an MVC problem
as an MDP. The first is graph-based (4), and sets the action
space as V, and the state space as sequences of vertices
in V representing partial solutions. The deterministic tran-
sition function is the obvious choice of adding vertices to



Co-training for Policy Learning

the current partial solution. The rewards are -1 for each
selected vertex. A terminal state is reached if the selected
vertices form a cover.

The second way is to formulate an integer linear program
(ILP) that encodes MVC problem:

max — g Ty,

VeV
subject to :
Xy + Xy > 1,Ve = (u,v) € E,
x, € {0,1},Yv € V.

We use branch-and-bound (48) to solve this ILP. Branch-
and-bound represents the optimization problem as a search
tree, and explores different areas of a search tree through a
sequence of branching operations. The MDP states rep-
resent current search tree, and the actions correspond to
which node to explore next. The deterministic transition
function is the obvious choice of adding a new node into
the search tree. The rewards are zero during intermediate
steps and the agent receives reward equal to the best objec-
tive value found in the end. A terminal state is a search tree
which contains an optimal solution.

The relationship between solutions in the two formulations
are clear. For a graph G = (V, E), a feasible solution to
the ILP corresponds to a vertex cover by selecting all the
vertices v € V with x, = 1 in the solution.

Note that, despite the deterministic dynamics, solving
MVC other combinatorial optimization problems can be
extremely challenging due to the very large state space. In-
deed, policy learning for combinatorial optimization is a
topic of active research (18; 1; 5; 3; 6).

Policy Learning. We consider policy learning over a dis-
tribution of MDPs. For instance, there can be a dis-
tribution of MVC problems. Formally, we have a dis-
tribution D of MDPs that we can sample from (i.e.,
M ~ D). For a policy m, we define the follow-
ing terms:  J(w) = Em~pnp(r,M)], n(x,M) =

n—1
JETW[Z%VT(SMJ]’ Ax(s,a) = Qr(s,a) — Va(s),
n—1
Qr(s,a) = ETNW[;)’YiT(Siaai)‘SO = s,ap = al,

n—1
Vi(s) = Err D2 7ir(s4,ai)|s0 = s] with J being the
overall objectivef 770 the expected cumulative reward of an
individual MDP M, A the advantage function, Q) the Q
function, and V the value function. The performance
of two policies can be related via the advantage function
(29; 49):

n—1

(@', M) = n(m, M) + Errr [y 7' An(sisai)] - (1)

=0

Based on the equivalence between a policy and its oc-
cupancy measure (50), we can rewrite the final term in
(1) with the occupancy measure, pr(s,a) = P(n(s) =

a) io: YiP(s; = s|m).
=0

With slight notation abuse, define p,(s) = Y. 7'P(s; =
i=0

s|m) to be the state visitation distribution. In policy itera-
tion, we aim to maximize:

n—1
ETNTF/ [Z ’YiAﬂ'(Siy ai)]
=0
1

n

= ESiNPﬂ/(S)[EaiN‘fT'(Si)[’YiA‘ff(siv a’i)“a

S -
[
- O

Q

]Esin,r(s) []Eair\«w’(si) [’yzATF(Su az)“

I
<

i

This is done instead of taking an expectation over
par(s) which has a complicated dependency on a yet
unknown policy 7’.  Policy gradient methods tend

to use the approximation by using p, which de-
pends on the current policy. We define the ap-
proximate objective as 7n.(7’, M) = n(m,M) +

n—1 .
> Espr (o) [Eaymr (s0) [V Ax (i, a;)]], and its associated
i=0

expectation over D as J (') = Eaqp [0 (7', M].

4. A Theory of Policy Co-training

In this section, we provide a theoretical characterization
of policy co-training, which motivates the design of our
CoPiEr algorithm presented in Section 5. Our theoreti-
cal analysis quantifies the policy improvement in terms
of policy advantages and differences, and caters to policy
gradient approaches. Due to space constraint, we defer all
proofs to the appendix.

For an MDP M ~ D, consider the rewards of two poli-
cies with different views 7 (74, M4) and nB (7B, MPB).
If nA (74, MA) > nB (7B, MP), then on this instance 7
performs better than 78, and thus we could use the trans-
lated trajectory of 74 as a demonstration for 7. Even
when J(74) > J(7P), because J is computed in expecta-
tion over D, 78 can still perform better than 7 on some
MDPs. Thus it is possible for the exchange of demonstra-

tions to go in both directions.

Formally, we can decompose the distribution D into two
parts D; and Dy such that the support of D, supp(D) =
supp(D1 )Usupp(D2) and supp(D; )Nsupp(D2) = B, where
for an MDP M € supp(D;), n(r4, M4) > n(rB, MB)
and for an MDP M € supp(Ds),n(r8?, MB) >
n(r4, M4). By construction, we can quantify the perfor-
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mance gap as:

Definition 1.
01 = Ept, [n(n, M*) = n(n?, MP)] 2 0
52 = EMNDZ [77(7737 MB) - 77(7TA7 MA)] >0
We can now state our first result on policy improvement.
Theorem 1. (Extension of Theorem 1 in (17)) Define:
op = Epplmax Dir (w () ][54 (s))],
B8, = Entnp, [max Dys(n” (s) |77 (s))],
ap = Ex~p[max Dir (n (s)l|7'7 (5))],

b5, = Epen, [max Dys(m?(s)7" (s))],

B
€p, = ME@]?})?DQ)IE,%X|AWB (s7a)|7
A

= A
€ Mglﬂgﬁp)lggﬂ (s, a)l,
A _
€p, = Me?;?;gpl)nslix|AWA(S7a)|7
€8 = max max|A.s(s,a)|

MéEsupp(D) s,a

Here Dg; & Djs denote the Kullback-Leibler and
Jensen-Shannon divergence respectively. Then we have:

29" (48D, ¢p, + apep)

J(ﬂ',A) > Jea (W/A) - (1—44)2 + 02
7B (484 e + aBeB
J(ﬂ_/B) > JﬁB(W/B) e ( 5(?_1;1]3)2 DED) 46

Compared to conventional analyses on policy improve-
ment, the new key terms that determine how much the pol-
icy improves are the 8’s and §’s. The (8’s, which quantify
the maximal divergence between 74 and 72, hinders im-
provement, while the §’s contribute positively. If the net
contribution is positive, then the policy improvement bound
is larger than that of conventional single view policy gradi-
ent. This insight motivates co-training algorithms that ex-
plicitly aim to minimize the 3’s.

5. The CoPiEr Algorithm

We now present practical algorithms motivated by the the-
oretical insights from Section 4. We start with an algo-
rithm named CoPiEr (Algorithm 1), whose important sub-
routines are EXCHANGE and UPDATE.

Algorithm 2 covers exchanging trajectories generated by
the two policies. First we estimate the relative quality of
the two policies with their sampled trajectories (Line 2-3 in
Algorithm 2). Then we use the trajectories from the better
policy as demonstrations for the worse policy on this MDP.

Algorithm 1 CoPiEr (Co-training for Policy Learning)
1: Input: A distribution D of MDPs, two policies
74, 78, mapping functions fa_, 5, fB—a
2: repeat
3:  Sample M ~ D, form M4, MB
4: Run 7 on M* to generate trajectories {7/},
5: Run7” on M* to generate trajectories {7.°}7_,
6 {T{A},{TJ{B} — EXCHANGE({T;“},{TJB})
7. 74« UPDATE(n4, {7/}, {T]/»A})
8: 7B <« UPDATE(r?, {TZ-B},{TJ/-B})
9: until Convergence

Algorithm 2 EXCHANGE

1: Input: Trajectories {771}

7 =

pand {77}

4: if f(m A, MA) > H(rB, MP) then
50 {1 7PY e {fans(r)L
6: {TJ‘B*}A} «— 0
7: else

8 {r17P 0

o {rB4} e {faoalrP )Yy
10: end if

11: return {775}, {7574}

This mirrors the theoretical insight presented in Section 4,
where based on which sub-distribution an MDP is sampled
from, the relative quality of the two policies is different.

For UPDATE, we can form a loss function that is de-
rived from either imitation learning or reinformcent learn-
ing. Recall that we aim to optimize the /3 terms in Theorem
1, however it is not feasible to directly optimize that. So
we consider a surrogate loss C' (line 2 of Algorithm 3) that
measures the policy difference. In practice, we use typi-
cally behavior cloning loss as the surrogate.

6. Experiments on Minimum Vertex Cover

‘We now present empirical results on minimum vertex cover
by applying a combination of policy co-training: reinforce-
ment learning on one view and imitation learning on the
other.

Setup. We consider the challenging combinatorial opti-
mization problem of minimum vertex cover (MVC). We
use 150 randomly generated Erdds-Rényi (51) graph in-
stances for each scale, with scales ranging {100-200, 200-
300, 300-500, 400-500} vertices. For training, we use 75
instances, which we partition into 15 labeled and 60 unla-
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Algorithm 3 UPDATE

1: Inmput: Current policy 7, sampled trajectories from 7,
{7i}i~, and demonstrations {7} }7

j=1
2: Form a loss function L(m) =
— > r(7i) + AC(m, {7}}7_,), RL with IL loss
i=1

AC (m, {7;}7_;), IL loss only
3: Update m < m — aV.L()

Performance comparison for Minimum Vertex Cover

Gurobi ILP (Retrospective imitation)
L6 B Graph (RL) ILP (CoPiEr)
B Graph (CoPiEr) EE CoPiEr Final
BN P (DAgger)

1.0
8 |
0.6 o
0.4 | c
1 1
. 1 i i
- . _ . _ e _ e

100-200 200-300 300-400 400-500
#vertices in the graph

Performance gap compared to CoPiEr Final

Figure 2. Comparison of COPIEr with other learning-based base-
lines and a commercial solver, Gurobi. The y-axis measure
relative gaps of various methods compared with COPIEr Final.
CoPiEr Final outperforms all the baselines. Notably, the gaps are
significant because getting optimizing over large graphs is very
challenging.

beled instances. We use the best solution found by Gurobi
within 1 hour as the expert solution for the labeled set to
bootstrap imitation learning. For each scale, we use 30
held-out graph instances for validation, and we report the
performance on 45 test graph instances.

Views and Features. The two views are the graphs them-
selves and integer linear programs constructed from the
graphs. For the graph view, we use DQN-based reinforce-
ment learning (4) to learn a sequential vertex selection pol-
icy. We use structure2vec (52) to compute graph em-
beddings to use as state representations. For the ILP, we
use imitation learning (1) to learn node selection policy for
branch-and-bound search. A node selection policy deter-
mines which node to explore next in the current branch-
and-bound search tree. We use node-specific features (e.g.,
LP relaxation lower bound and objective value) and tree-
specific faetures (e.g., integrality gap, and global lower and
upper bounds) as our state representations.

Policy Class. For the graph view, our policy class is sim-
ilar to (4). In order to perform end-to-end learning of the
parameters with labeled data exchanged between the two
views, we use DQN (27) with supervised losses (53) to

learn to imitate the better demonstrations from ILP view.
For all our experiments, we determined the regularizer for
the supervised losses and other parameters through cross-
validation on the smallest scale (100-200 vertices). The
graph view models are pre-trained with the labeled set us-
ing behavior cloning. We use the same number of training
iterations for all the methods.

For the ILP view, our policy class consists of a node rank-
ing model that prioritizes which node to consider next. We
use RankNet (54) as the ranking model, instantiated using a
2-layer neural network with ReLU as activation functions.
We implement our approach for the ILP view within the
SCIP (55) integer programming framework.

Methods Compared. At test time, when a new graph is
given, we can run both policies and return the better solu-
tion. We term this practical version “CoPiEr Final” and
measure other policies’ performance against it. We com-
pare with single view learning baselines. For the graph
view, we compare with RL-based policy learning over
graphs (4), labelled as “Graph (RL)”. And for the ILP view,
we compare with imitation learning method (1) “ILP (DAg-
ger)”, retrospective imitation method (5) “ILP (Retrospec-
tive Imitation)” and a commercial solver Gurobi (56). We
also show the performance of the two policies in CoPiEr
as standalone policies instead of combining them, labelled
“Graph (CoPiEr)” and “ILP (CoPiEr)”. ILP methods
are limited by the same node budget in branch-and-bound
trees.

Results. Figure 2 shows the results. We see that CoPiEr
Final outperforms all baselines as well as Gurobi. Interest-
ingly, it also performs much better than either standalone
CoPIEr policies, which suggests that Graph (CoPiEr) is
better for some instances while ILP (CoPiEr) is better on
others. This finding validates combining the two views to
maximize the benefits from both.

7. Conclusion & Future Work

We have presented COPIEr (Co-training for Policy Learn-
ing), a general framework for policy learning for sequential
decision making tasks with two representations. Our ap-
proach is compatible with both reinforcement learning and
imitation learning as subroutines. We evaluated on a chal-
lenging combinatorial optimization problem which shows
significant improvements over numerous baselines.

There are many interesting directions for future work. On
the theory front, directions include extending to more than
two views. On the application front, algorithms such as
CoPiEr can potentially improve performance in a wide
range of robotic and other autonomous systems that utilize
different sensors and image data.
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8. Appendix
8.1. Proofs

To prove Theorem 1, we need to use a policy improvement
result for a single MDP (a modified version of Theorem 1
in (17)).

Theorem 2. Assume for an MDP M, an expert policy g
have a higer advantage of over a policy © with a margin,

ie, n(rg, M) —n(r, M) > & Define

a = max D (w'(s)[[7(s))
5 = max D5 (3) | e(5)
€rp = maX|AﬂE(57a)|

€r = max|A,(s,a)]
s,a

then (', M) > s (', M) — Dbz tocs) s

Proof. The only difference from the original theorem is
that the original assumes Eq, ., (s),a~r(s)[Ar (5, a8) —
Ax(s,a)] > 6" > 0 for every state s. It is a stronger
assumption which is not needed in their analysis. No-
tice that the advantage of a policy over itself is zero, i.e.,
Eqr(s)[Ax(s,a)] = 0 for every s, so the margin assump-
tion simplifies to E, <, (s)[Ax (s, ap)] > J".

By the policy advantage formula,

77(77Ea M) — 77(777 M) = Ervrg [Z 'YiATr(Siv al)]

=0

n(md, MA).

J(m'4)

= Epnn[n(x™4, M)

= Eptnn, n(74, MA)] + Eptop, [n(x'4, MP)]
> B, (7', MA)+

294 (4B¢en + aenpa)

EMNDz [7771"4 (ﬂJAvMA) - (1 — 7A)2 6./\/(]
2y ae,a
> Epgp, [pa (4, MA) — —L—7 |+
> Eptep, [ ( ) (1_,YA)2]
294 (4Ber5 + aea)
EMNDz [7771"4 (ﬂ-lAvMA) - (1 — ’7A)2 6./\/1]
2vAae,a

= Eptap [ (74, M) - EM~D[W]*

Epm~ps, [W] + Eptap, [61]

oy 2v4BD,eB, + apep)
2 e (™) = (1 —~4)?

The derivation for .J(7'P) is the same. O

+ 02

= ]Esiwp,rE EaiwﬂE(si) [Z ’ylAﬂ' (8i7 az)]
=0

2 ESiNPﬂE [51 Z 72]
=0

6/
1—x

So an assumption on per-state advantage translates to a
overall advantage. Thus we can make this weaker assump-
tion which is also more intuitive and the original statement
still holds with a different § term. O

Proof of Theorem 1:

Proof. Theorem 1 is a distributional extension to the the-
orem above. For M ~ Dy, let S5 = n(78, MB) —



