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Abstract
In many real-world scenarios, an autonomous
agent often encounters various tasks within a sin-
gle complex environment. We propose to build a
graph abstraction over the environment structure
to accelerate the learning of these tasks. Here,
nodes are important points of interest (pivotal
states) and edges represent feasible traversals be-
tween them. Our approach has two stages. First,
we jointly train a latent pivotal state model and a
curiosity-driven goal-conditioned policy in a task-
agnostic manner. Second, a high-level Manager
uses the world graph to quickly find solutions to
new tasks and expresses subgoals in reference to
their nearby pivotal states to a low-level Worker.
The Worker can then also use the graph to traverse
and explore in long range. We perform a thorough
ablation study to evaluate our approach on a suite
of challenging maze tasks, demonstrating signif-
icant advantages from the proposed framework
over baselines that lack world graph knowledge
in terms of performance and efficiency.

1. Introduction
Many real world scenarios require an autonomous agent to
play different roles within a single complex environment.
For example, a Mars rover carries out scientific objectives
ranging from searching for rocks to calibrating orbiting in-
struments (NASA, 2015). Intuitively, a good understanding
of the high-level structure of its operational environment
would help an agent accomplish its downstream tasks. In
reality, however, both acquiring such world knowledge and
effectively applying it to solve tasks are often challenging.
To address these challenges, we propose a generic two-stage
framework that enables agents to learn high-level world
structure in the form of a simple graph (Biggs, 1993) and
integrate this into a hierarchical policy model.

In the initial stage, we alternate between exploring and up-
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dating a descriptor of the world in a graph format (Biggs,
1993), referred to as the world graph (Figure 1), in an unsu-
pervised fashion. The nodes, termed pivotal states, are the
most critical states in recovering action trajectories (Chatzi-
giorgaki & Skodras, 2009; Jayaraman et al., 2018; Ghosh
et al., 2018). In particular, given a set of trajectories, we
optimize a fully differentiable recurrent variational auto-
encoder (Chung et al., 2015; Gregor et al., 2015; Kingma
& Welling, 2013) with binary latent variables (Nalisnick &
Smyth, 2016), each designated to a state whose prior distri-
bution (conditioning on the state) is learned and indicates
whether it belongs to the set of pivotal states. Wide-ranging
and meaningful training trajectories are therefore essential
ingredients to the success of the latent model. Existing
world descriptor learning frameworks often use random (Ha
& Schmidhuber, 2018) or curiosity-driven ones (Azar et al.,
2019). Our trajectory-collecting agent uses both random
walks and a simultaneously learned curiosity-driven goal-
conditioned policy (Ghosh et al., 2018; Nair et al., 2018).
The agent also initiates exploration from the current set of
pivotal states, similar to the “cells” in Go-Explore (Ecoffet
et al., 2019), except that ours are learned by the latent model
instead of using heuristics. The edges of the graph, extrap-
olated from both the trajectories and the goal-conditioned
policy, correspond to the actionable transitions between
close-by pivotal states. Finally, the goal-conditioned policy
can be used to further promote transfer learning in the next
stage (Taylor & Stone, 2009).

At first glimpse, the world graph seems suitable for model-
based RL (Littman, 1996; Kaiser et al., 2019), but our
method emphasizes the connections among neighboring
pivotal states rather than transitions over any arbitrary pair,
which is usually deemed as a much harder problem (Gu et al.,
2016). Therefore, in the next stage, we propose a hierarchi-
cal reinforcement learning (Kulkarni et al., 2016; Marthi &
Guestrin) (HRL) approach to incorporate the world graph
for solving specific downstream tasks. Concretely, within
the paradigm of goal-conditioned HRL (Dayan & Hinton,
1993; Nachum et al., 2018b; Vezhnevets et al., 2017; Levy
et al., 2017), our approach innovates how the high-level
Manager provides goals and how the low-level Worker navi-
gates. Instead of sending out a single objective, the Manager
first selects a pivotal state from the world graph and then
specifies a final goal within a nearby neighborhood of the
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Figure 1: Left: a subgraph exemplifies how to forge edges and traverse between pivotal states (in blue). Right: An example rollout from
our proposed HRL policy with Wide-then-Narrow Manager instructions and world graph traversals, solving a challenging Door-Key task.

pivotal state. Such sequential selection is referred to as the
Wide-then-Narrow (WN) instruction. In this way, as nav-
igating from its nearby pivotal state to the desired one is
greatly simplified thanks to applying graph traversal tech-
niques (Bertsekas, a) on the world graph, the Worker can
focus more on achieving local objectives. Lastly, as previ-
ously mentioned, the goal-conditioned policy derived from
learning the world graph can serve as an initialization to
the Manager and Worker, allowing fast skill transfer to new
tasks as demonstrated by our experiments.

In summary, our main contributions are:

• A complete two-stage framework for 1) unsupervised
world graph discovery and 2) accelerated HRL by inte-
grating the graph.

• The first stage proposes an unsupervised module to
learn world graphs, including a novel recurrent differen-
tiable binary latent model and a curiosity-driven goal-
conditioned policy.

• The second stage proposes a general HRL scheme with
novel components such as the Wide-then-Narrow in-
struction and navigation via world graph traversal.

• Quantitative and qualitative empirical findings over a
complex 2D maze domain show that our proposed frame-
work 1) produces a graph descriptor representative of
the world and 2) improves both sample efficiency and fi-
nal performance in solving downstream tasks by a large
margin over baselines that lack the descriptor.

2. Environment
For ease of clear exposition and scientific control, we choose
complex 2D mazes (Chevalier-Boisvert & Willems, 2018)
that are finite, fully observable and deterministic (over
each episode) as our test-bed, i.e. for each state-action
pair, the transition (st, at)→ st+1 is deterministic, where

st ∈ S, at ∈ A are finite. More involved environments can
introduce interfering factors, shadowing the effects from the
proposed method, e.g. the need of a well-calibrated latent
goal space (Higgins et al., 2017; Dwiel et al., 2019; Nachum
et al., 2018a); Section 6 briefly speculates on extensions of
our framework to other environments as future directions.
We design 3 mazes of small, medium and large sizes with
varying compositions (see Appendix for visualization). De-
spite their finite, fully observable and deterministic nature,
these mazes—especially the larger ones—still pose much
challenge, especially when the downstream task is of sparse
reward or more complicated logic. The maze states received
by the agent are in the form of bird-eye view matrix repre-
sentations. More details on preprocessing are available in
the Supplementary Materials.

3. World Graph Discovery
We envision a directed simple graph (Biggs, 1993) Gw to
capture the high-level structure of the world. Its nodes are
a set of points of interest, termed pivotal states (sp ∈ Vp),
and edges represent feasible traversals among the nodes.
Drawing intuition from unsupervised sequence segmenta-
tion (Chatzigiorgaki & Skodras, 2009; Jayaraman et al.,
2018) and imitation learning (Abbeel & Ng, 2004; Hus-
sein et al., 2017), we define Vp as the most critical states
in recovering action sequences generated by some agent,
indicating that these states lead to the most information
gain (Azar et al., 2019). In other words, given a trajectory
τ = {(st, at)}T0 , we learn to identify the most needed state
subset {st|st ∈ Vp} to infer the action sequence taken in τ
with a decent accuracy.

Supposing the state-action trajectories are available, we
formulate a recurrent variational inference model (see Sec-
tion 3.1) (Blei et al., 2017; Chung et al., 2015; Gregor et al.,
2015; Kingma & Welling, 2013), treating the action se-
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Figure 2: The pivotal state discovery model. A prior network (left) learns the state-conditioned prior in Beta distribution, pψ(zt|st) =
Beta(αt, βt). An inference encoder learns an approximate posterior in HardKuma distribution (Basting & et al, 2019) inferred from
(st, at)’s, qφ(zt|at, st) = HardKuma(α̃t, 1). A generation decoder reconstructs the action sequence from {st|zt = 1}. During training,
we sample from HardKuma(α̃t, 1) using the reparametrization trick (Kingma & Welling, 2013).

quences as evidence and inferring whether to keep a state
for action recovery in a binary latent variable. We learn a
prior over each latent zt conditioned on its associated state
st (as opposed to using a fixed prior or conditioning on
the surrounding trajectory) and use the prior mean as the
criterion for including st in Vp.

Meaningful Vp are learned from meaningful trajectories,
hence we develop a procedure to alternately update the la-
tent model and the policy used by the agent to collect train-
ing trajectories. When collecting training trajectories, we
place the agent at a state from the current iteration’s set of
Vp—it is possible since the agent can straightforwardly doc-
ument and reuse the paths from its initial position to states
in Vp. This way naturally allows the exploration starting
points to expand as the agent discovers more of its envi-
ronment. While straightforward to implement, a random
walk rollout policy can result in noisy trajectories that are
perhaps irrelevant to real tasks. We instead take inspiration
from prior work on actionable representations (Ghosh et al.,
2018) and learn a goal-conditioned policy πg for navigating
between close-by states, reusing its observed trajectories for
unsupervised learning (Section 3.2). To ensure broad state
coverage and diverse trajectories, we add a curiosity reward
from the unsupervised action reconstruction error to learn
πg. The latent model is then updated with new trajectories.
This cycle is repeated until the action reconstruction accu-
racy plateaus. To complete Gw and form the edges, we again
use both random trajectories and πg (Section 3.3). Lastly,
the implicit knowledge of the world embedded in πg can
be further transferred to downstream tasks through weight
initialization, which will be discussed later on.

The pseudo-code summarization of world graph discovery,
implementation details, a visualization of how Vp progresses
over training, the final Vp from different rollout policies
and the model architecture are provided in the Appendix.
The following sections are used to concretely describe each
component of our proposed process.

3.1. Recurrent Variational Model with Differentiable
Binary Latent Variables

We propose a recurrent variational model with differentiable
binary latent variables to discover Vp (Figure 2). Given a
trajectory τ = {(st, at)}T0 , we treat the action sequence
{at}T−10 as evidence in order to infer a sequence of binary
latent variables zt. The evidence lower bound to optimize is

ELBO =Eqφ(Z|A,S) [log pθ(A|S,Z)]

+DKL (qφ(Z|A,S)|pψ(Z|S)) .

The reconstruction objective Eqφ(Z|A,S) [log pθ(A|S,Z)] is
to reconstruct the action sequence given only the states
st where zt = 1, with the boundary states always given
s0 = sT = 1. To ensure differentiablity, we opt to use
a continuous relaxation of discrete binary latent variables
by learning a Beta distribution as the priors for z’s (Russo
et al., 2018). Moreover, we learn the prior for each zt condi-
tioned on its associated state st (Figure 2). The prior mean
for each zt signifies on average how useful st is for action
reconstruction. In this way, regularizing the approximated
posterior with the learned prior (KL-divergence term) en-
courages similar trajectories to use the same states for action
reconstruction. We define Vp as the top 20% states with the
largest learned prior means.

We model the approximate posteriors using the Hard
Kumaraswamy distribution (Basting & et al, 2019)
[HardKuma(α̃t, β̃t)] which resembles the Beta distribution
but is outside the exponential family. This choice allows us
to sample 0’s and 1’s without sacrificing differentiability,
accomplished via the stretch-and-rectify procedure (Bast-
ing & et al, 2019; Louizos et al., 2017) and applicability
of the reparameterization trick thanks to its simple form
of CDF (Kingma & Welling, 2013; Rezende et al., 2014;
Maddison et al., 2016). Lastly, the KL-divergence between
Kuma distribution and Beta distribution can be approxi-
mated in closed form (Nalisnick & Smyth, 2016). We fix
β̃t = 1 to ease optimization since the Kuma and Beta distri-
butions coincide when αi=α̃i, βi=β̃i=1.
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There is not yet any constraint to prevent the model from
selecting all states to reconstruct {at}T−10 . To introduce
a selection bottleneck, we impose a regularization on the
expected L0 norm of Z = (z1 · · · zT−1) to promote sparsity
at a targeted value µ0 (Louizos et al., 2017; Basting & et al,
2019). In other words, this objective constraints there should
be µ0 of activated zt = 1. Another similarly constructed
transition regularization encourages isolated activation of zt,
meaning the number of transition between 0 and 1 among
zt’s should roughly be 2µ0. Note that both expectations in
L0 and LT have closed forms for HardKuma.

L0 =
∥∥Eqφ(Z|S,A)[‖Z‖0]− µ0

∥∥2 ,
LT =

∥∥Eqφ(Z|S,A)Σ
T
t=01zt 6=zt+1

− 2µ0

∥∥
Lagrangian Relaxation. The overall optimization ob-
jective consists of action sequence reconstruction, KL-
divergence, L0 and LT . We tune the objective weights
λi using Lagrangian relaxation (Higgins et al.; Basting &
et al, 2019; Bertsekas, b), treating λi’s as learnable parame-
ters and performing alternative optimization between λi’s
and the model parameters. We observe that as long as their
initialization is within a reasonable range, λi’s converge to
local optimum autonomously,

max
{λ1,λ2,λ3}

min
{θ,φ,ψ}

Eqψ(Z|A,S) [log pθ(A|S,Z)]

+ λ1DKL (qφ(Z|A,S)|pψ(Z|S)) + λ2L0 + λ3LT .

Our finalized latent model allows efficient and stable
mini-batch training. Alternative designs, such as Pois-
son prior (Kipf et al., 2018) for latent space and Trans-
former (Vaswani et al., 2017) for sequential modeling, are
also possibilities for future investigation. More mathemat-
ical details related to the latent model can be found in the
Appendix.

3.2. Curiosity-Driven Goal-Conditioned Agent

A goal-conditioned policy, π(at|st, g), or πg, is trained to
reach a goal state g ∈ S given current state st (Ghosh et al.,
2018). For large state spaces, training a goal-conditioned
policy to navigate between any two states is non-trivial.
However, our use-cases (including trajectory generation for
unsupervised learning and navigation between nearby pivot
states in downstream tasks), only requires πg to reach goals
over a short range. We train such a policy by sampling goals
using a random walk from a given starting state. Inspired
by the success of intrinsic motivation methods (in particular,
curiosity (Burda et al., 2018; Achiam & Sastry, 2017; Pathak
et al., 2017; Azar et al., 2019)), we leverage the readily
available action reconstruction errors from the generative
decoder as intrinsic reward signals to boost exploration
when training πg . The pseudo-code describing this method
is found in the Appendix.

3.3. Edge Connections

The last crucial step towards the world graph completion
is building the edge connections. After finalizing Vp, we
perform random walks from sp ∈ Vp to discover the under-
lying adjacency matrix (Biggs, 1993) connecting individual
sp’s. More precisely, we claim a directed edge sp → sq if
there exist a random walk trajectory from sp to sq that does
not intersect a third pivotal state. We collect the shortest
such paths as the graph edges. Each path is further refined
by πg, using trajectories collected from the policy when
substituting sp and sq for the starting state and goal state.
For stochastic or partially observable environments, we may
entirely count on πg rather than path memorization.

4. Accelerated Hierarchical Reinforcement
Learning

We now introduce a hierarchical reinforcement learn-
ing (Kulkarni et al., 2016; Marthi & Guestrin) (HRL) mod-
ule that leverages the world graph Gw to accelerate learning
downstream tasks. There are three core innovations, namely
Wide-then-Narrow Manager instruction (Section 4.2), Gw
traversal (Section 4.3), and knowledge transfer via initializa-
tion from πg (Section 4.4). Each is generally applicable to
many different HRL algorithms. We compare our method
to an A2C baseline and its hierarchical extension, Feudal
Network (Section 4.1). We provide the model architecture
and all implementation details in the Appendix.

4.1. Preliminaries and Baselines

We consider the standard discrete time step, discounted RL
setup. An agent, controlled by policy π(at|st−1) and receiv-
ing reward rt at time t, is trained to maximize its cumulative
expected return over time R = E(st,at)∼π[rt]. Advantage
Actor-Critic (A2C), is a popular and relatively simple-to-
use, model-free, on-policy RL algorithm (Wu & Tian, 2016;
Pane et al., 2016; Mnih et al., 2016). We use the recurrent
A2C-LSTM variant as a non-hierarchical baseline.As an on-
policy algorithm, A2C learns a value function V for estimat-
ing future cumulative discounted reward given current state
st and adjusts the probability given by the policy to actions
based on the advantage of the observed reward compared to
that predicted by V . Typically (and as we do here), policy
optimization includes entropy regularization (H) to prevent
premature convergence. Feudal Network (FN) (Dayan &
Hinton, 1993; Vezhnevets et al., 2017) is a hierarchical ex-
tension of A2C (Figure 4). It defines a high-level controller,
i.e. Manager, which learns to propose subgoals to the low-
level controller, i.e. Worker, which learns to complete the
subgoals. The Manager receives rewards from the environ-
ment and the Worker receives rewards for completing the
subgoals provided by the Manager. The high- and low-level
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Figure 3: Left: a general configuration of Feudal Netowrk; Manager and Worker are both A2C-LSTMs operating at different temporal
resolutions. Right: Our proposed Wide-then-Narrow Manager instruction, where Manager first outputs a wide goal gw from a pre-defined
set of candidate states V , e.g. Vp, and then zooms in to attend a closer up area sw around gw to narrow down the final subgoal gn.

components learn distinct networks that operate at different
temporal resolutions, such that the Manager only outputs a
new subgoal if either Worker completes its current one or
the subgoal horizon c is exceeded. Because the mazes in
our setting are finite and fully observable, we can precisely
characterize the set of subgoals. The baseline FN can select
any well-defined state as a subgoal, i.e. the Manager policy
network emits a probability vector of dimension |S|.

4.2. Wide-then-Narrow Manager Instruction

To adapt the graph Gw from our unsupervised learning stage
to the HRL framework, we similarly need a way to express
any state as a subgoal while still constraining the Manager
output according to the abstraction provided by the graph.
To that end, we propose a Wide-then-Narrow (WN) mecha-
nism for modeling Manager outputs. Given a pre-defined set
of candidate states denoted V , the Manager follows a “wide-
goal” policy πω derived from global context st and outputs
a “wide” subgoal gw ∈ V . We propose to use the learned
pivotal states Vp as this set V . After selecting this “wide-
goal” gw, the Manager zooms its attention to an N × N
local area sw around gw. Taking into account both global st
and local sw information, a “narrow-goal” policy πn selects
a final, “narrow” goal gn ∈ sw, which is then together with
the wide goal passed to the Worker as its next subgoal pair
(gw, gn). The Worker is rewarded if it reaches gw for the
first time during current horizon or gn. The policy gradient
is straightforward to modify but the entropy regularization
H easily becomes intractable when the state spaces grow
large (see Appendix). In practice we resort to a functional
approximation of H and obtain the final Manager policy
network update, where Am,t is the Manager’s advantage at
time t:

∇θAm,t log πω (gw,t|st)πn (gn,t|st, gw,t, sw,t)
+∇θH (πω) +∇θH (πn(·|gw,t)) .

4.3. World Graph Traversal

By limiting the set of wide-goal options to pivotal states, i.e.
set V = Vp, we can take advantage of the edge connections
in the world graph. We hereby set forward an example on
how. When the Worker is in pursuit of gn in the neighbor-
hood of gw, we allow it to essentially re-use the traversal
edges stored in Gw when it encounters a state that is part of
the graph. Specifically, if the agent encounters a pivotal state
sp ∈ Vp such that there is a path on Gw to the wide-goal gw,
it can navigate from sp to gw along the path as if leveraging
a documented repertoire of behaviors. The optimal traver-
sal route can be estimated basing on edge information via
e.g., in our case, dynamic programming (Sutton; Feng et al.,
2004). If a new blockage in the environment (i.e. a door)
makes the traversal unviable, we do not allow the Worker to
hop onto the blocked path and expect the Manager to learn
to plan according to this limitation. We demonstrate this be-
havior in our experiments. World graph traversal potentially
allows the Manager to assign more task-relevant goals that
are far away, speeding up training of high-level control by
outsourcing basic planning of transportation. For the same
reason, the Worker may also concentrate on learning to op-
erate towards the localized gn after arriving at gw. Another
foreseeable benefit is the enhancement of exploration, as the
agent is no longer restricted to lingering around its current
position.

4.4. Transfer from Goal-Conditioned Policy via
Initialization

Lastly, we suggest further leveraging implicit knowledge
of the world acquired by πg in the subsequent HRL train-
ing. Transferring and generalizing skills between tasks in
the context of RL is an important practice often leading
to performance gain (Taylor & Stone, 2009; Barreto et al.,
2017). In (Ghosh et al., 2018), the authors show how a
goal-conditioned policy captures the underlying structure
of the environment and actionable representations derived
from such policy are beneficial for other tasks. Additionally,
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Task MultiGoal Dense Reward MultiGoal Sparse Reward
Maze Small Medium Large Small Medium Large

Baselines
A2C 2.04±0.05 Fail Fail -0.10±0.34 Fail Fail
FN Fail Fail Fail 0.19±0.02 Fail Fail

with πg init 2.93±0.74 Fail Fail Fail Fail Fail
Wide-Narrow
Vall Fail Fail Fail Fail Fail Fail
Vrand Fail Fail Fail Fail Fail Fail
Vp Fail Fail Fail Fail Fail Fail

with πg init
Vall 4.73±0.50 4.71±0.39 Fail 0.32±0.02 Fail Fail
Vrand 3.67±1.07 4.72±0.73 Fail 0.36±0.02 Fail Fail
Vp 5.25±0.13 5.15±0.11 Fail 0.39±0.09 Fail Fail

with Gw traversal
Vrand 3.85±0.83 2.59±0.07 1.65±0.42 0.17±0.03 0.19±0.04 0.20±0.12
Vp 3.92±0.22 2.56±0.09 2.18±0.12 0.20±0.04 0.20±0.04 0.16±0.02

init+traversal
Vrand 4.16±1.06 3.29±0.93 2.30±0.49 0.25±0.06 0.24±0.06 0.19±0.02
Vp 5.05±0.03 3.00±0.90 2.72±0.50 0.42±0.07 0.25±0.03 0.26±0.11

Door-Key πg init Gw traversal init+traversal
Wide-Narrow Vall Vrand Vp Vrand Vp Vrand Vp

Small 94±5 97±2 99±0 Fail 37±15 76±14 92±2
Medium 25±15 1±1 56±2 Fail Fail 79±11 76±6

Large Fail Fail Fail Fail Fail 27±40 26±19

Table 1: Top: Experimental results over MultiGoal and MultiGoal-Sparse on small, medium, and large mazes (average reward ± std).
Bottom: Experimental results over Door-Key task on small and medium mazes (average success rate in % ± std). “Fail” means training
is either not initiated or validation rewards are never above 0. We omit reporting some suboptimal models on Door-Key for clearer
presentation.

optimization of deep neural networks is sensitive to weight
initialization (Mishkin & Matas, 2015; Le et al., 2015), espe-
cially for a system (Co-Reyes et al., 2018) like HRL due to
its complexity and lack of clear supervision. Therefore, we
attempt to achieve both implicit skill transfer and improved
optimization by using the weights from πg to initialize the
Worker and the Manager.

5. Experiments
We validate the effectiveness and assess the impact of each
component of our framework in a thorough ablation study on
three challenging maze tasks with different reward structures
and logic. All implementation details, e.g., hyperparameters,
are in the Appendix.

Experimental Setup We use 3 challenging maze tasks
for ablation studies. In MultiGoal, the agent needs to collect
5 randomly spawned balls and exit from a designated exit
point. Reaching each ball or the exit point gives reward
rt = +1. Its sparse version, MultiGoal-Sparse, only gives
a single reward r ≤ 1 proportional to the number of balls
collected upon exiting. Door-Key is a much more difficult
task that adds new actions (“pick” and “open”) and new
objects to the environment (additional walls, doors, keys).
The agent needs to pick up the key, open the door (reward
+1) and reach the exit point on the other side (reward +1),
see Figure 4. Lastly, every action taken by the agent receives
a negative reward −0.01.

A2C and FN are our non-hierarchical and hierarchical base-
lines. We then augment WN on top of FN with 1 of 3
possible sets of V’s for the Manager to pick gw from: Vall
includes all valid states, Vrand are uniformly sampled states,

Vp are learned pivotal states, Vp and Vrand are of the same
size. For Vrand and Vp1, we compute their edge connections
as illustrated in Section 3.3 and add Gw traversal on top of
WN. Notice neither πg nor guaranteed state access is avail-
able to Vrand, but we grant all pre-requisites to the random
case for the fairest comparison possible. Finally, we repeat
all experiments with πg initialization. Again, πg is given to
Vall and Vrand for free.

We inherit most hyperparameters from the training of πg,
as the Manager and the Worker both share similar archi-
tecture as πg. The hyperparameters of πg in turn follow
those from (Shang et al., 2018). Because these tasks are
more difficult than goal-orientation, we increase the max-
imal number of training iterations from 36K to 100K and
the rollout steps for each iteration from 25 to 60. Hyperpa-
rameters specific to HRL are the horizon c = 20 and the
size of sw, N = 5 for small and medium, N = 7 for large.
We follow a rigorous evaluation protocol acknowledging
the variability in Deep RL (Henderson et al., 2018): each
experiment is repeated with 3 seeds (Wu et al., 2017; Os-
trovski et al., 2017), 10 additional validation seeds are used
to pick the best model which is then tested on 100 testing
seeds. Mean and variance of testing results are summarized
in Table 1.

5.1. Result Discussion

Transfer via Initialization Table 1 and Figure 4 show
initialization with πg is crucial across all tasks, especially
for the hierarchical models—e.g. a randomly initialized
A2C outperforms a randomly initialized FN on small-maze

1Vall is a trivial case excluded here as every state is 1 step
away from its adjacent states.
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Figure 4: Validation curves during training (average reward over 3 seed ± std) for MultiGoal task with dense reward. Left: Compare
between Vp and Vrand, with or without traversal, all models here use WN and πg initialization. Observe that (1) traversal evidently speeds
up convergence (2) Vrand tends to carry higher variance and slightly inferior performance than Vp. Right: compare with or without πg
initialization on Vp, all models use WN; initialization shows clear advantage.

MultiGoal. Models starting from scratch fail on almost
all tasks unless coupled with Gw traversal, which is still
inferior to their πg initialized counterparts. These results
also corroborate the claim from (Ghosh et al., 2018) that
goal-conditioned policies are a promising venue for task
transfer.

Wide-then-Narrow Comparing A2C, FN and Vall sug-
gests WN is a highly effective way to structure Manager
subgoals. For example, in small MultiGoal, Vall (4.73±0.5)
surpasses FN (2.93±0.74) by a large margin. We posit that
the Manager tends to select gw from a certain smaller subset
of V , simplifying the learning of transitions between gw’s
for the Worker. As a result, the Worker can focus on solving
local objectives. The same reasoning conceivably explains
why Gw traversal does not yield performance gains on small
and medium MultiGoal. For instance, Vp on small Multi-
Goal scores 5.25±0.13, slightly higher than with traversal
5.05±0.13. However once transition learning becomes more
difficult with larger mazes, the Worker starts to fail discov-
ering these transitions and at the end also the task, e.g., on
large MultiGoal.

World Graph Traversal In the case described above, the
addition of world graph traversal plays an essential role,
e.g. for large MultiGoal. As we conjectured in Section 4.3,
this phenomenon can be explained by the much expanded
exploration range and a lift of responsibility off the Worker
to learn long distance transitions as a result of using Gw
traversal. Moreover, Figure 4 confirms another conjecture
from Section 4.3 that Gw traversal speeds up convergence,
more evidently with larger mazes. Lastly, in Door-Key, the
agent needs to plan and execute a particular combination
of actions. The huge discrepancy on medium Door-Key
between using traversal or not, 75±6 vs 56±2, suggests Gw
traversal indeed improves long-horizon planning.

Role of Vp Comparing Vp to Vrand intuits the quality of
pivotal states identified by the latent model. Over all, Vp
either exhibits better or comparable results as Vrand, but
with much less variance between different seeds. If one
luckily picks a set of random states suitable for a task, it
can deliver great results but the opposite is equally possible.
Besides, edge formation between the random states is still
procured from the learning of Gw. Therefore the favorable
performance of Vrand does not undermine the value of world
graph discovery.

6. Future Work and Conclusions
We propose a two-stage framework to 1) learn a concise
world abstraction as a graph and 2) apply it to accelerate
HRL for specific downstream tasks. Our thorough ablation
studies on several challenging finite state fully observable
2D mazes show clear advantage of each proposed innovative
component.

Future work will extend the framework to other types of
environments such as partially observable, stochastic and
high dimensional environments, through e.g. probabilis-
tic planning (Kaelbling et al., 1998), latent embedding of
(belief) states (Guo et al., 2018) and goals (Nachum et al.,
2018a). It is also worth investigating a principled way to
adapt our framework to evolving or constantly changing en-
vironments through for instance meta-learning (Finn et al.,
2017). Another direction is to engage off-policies training
to achieve better sample efficiency. Finally, we’d like to
test applying the learned world graph beyond HRL, such
as in structured exploration by using pivotal state as check-
outs (Ecoffet et al., 2019) or in a multiagent setting (Buşoniu
et al., 2010; Hu et al.).
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