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Abstract

Most on-policy imitation algorithms, such as
DAgger, are designed for learning with a fixed
supervisor. However, there are many settings
in which the supervisor improves during policy
learning, such as when the supervisor is a human
performing a novel task or an improving algo-
rithmic controller. We consider learning from an
“improving supervisor” and derive a bound on the
static-regret of online gradient descent when a
converging supervisor policy is used. We present
an on-policy imitation learning algorithm, Fol-
low the Improving Teacher (FIT), which uses a
deep model-based reinforcement learning (deep
MBRL) algorithm to provide the sample complex-
ity benefits of model-based methods but enable
faster training and evaluation via distillation into
a reactive controller. We evaluate FIT with ex-
periments on the Reacher and Pusher MuJoCo
domains using the deep MBRL algorithm, PETS,
as the improving supervisor. To the best of our
knowledge, this work is the first to formally con-
sider the setting of an improving supervisor in
on-policy imitation learning.

1. Introduction
In on-policy imitation learning, a policy is iteratively trained
to match the behavior of a supervisor on a particular task
on the distribution of the learned policy. In algorithms such
as DAgger (Ross et al., 2011a), the supervisor serves as a
labeler, providing feedback on the appropriate controls for
states visited by the learner. Ross et al. (2011a) show that
DAgger can be interpreted as a no-regret algorithm in the
online-learning setting, and provides vanishing regret guar-
antees when the policy update step via Follow The Leader
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(FTL) has vanishing regret (Ross et al., 2011a; Kakade &
Tewari, 2009).

Prior work focuses on imitation learning algorithms with a
fixed supervisor (Ross et al., 2011a; Sun et al., 2017; Lee
et al., 2019; Cheng & Boots, 2018). However, in this work,
we consider a convergent sequence of supervisors. This
context is motivated by practical scenarios in which the
supervisor may improve its task performance substantially
as time progresses, e.g., as a human supervisor learns how
to play a game they have never played or teleoperate a robot
with unfamiliar controls.

We investigate how initially suboptimal labeling feedback
affects the incurred static regret of the learned policy. This
is particularly relevant to long time horizon tasks, in which
a large-scale system is designed to improve over time on a
difficult task using human experience as feedback. In this
work, we show that results are not significantly affected
when the supervisor is initially suboptimal, as long as it
converges to the desired policy.

Learning from improving supervisors also has applications
to deep model-based reinforcement learning, which has
attracted interest due to the improved sample-efficiency
compared to model-free methods (Chua et al., 2018). Re-
cent model-based RL algorithms for continuous-control do-
mains represent system dynamics with a deep neural net-
work, which is updated on-policy, and use model-predictive
control (MPC) to generate controls (Chua et al., 2018; Naga-
bandi et al., 2018). However, generating controls for dy-
namics models represented by deep neural networks often
involves significant online computation, making it infeasible
to collect high-frequency policy rollouts from the model-
based controller. This significantly slows down both train-
ing, which requires policy rollouts for policy evaluation, and
evaluation at test-time, making direct application of these
techniques difficult in many robotic tasks. We focus on this
setting in this work.

Motivated by the idea of learning from an improving super-
visor, we present an on-policy imitation learning algorithm
to train a model-based deep reinforcement learning agent
using off-policy data from a model-free learner policy. The
model-based supervisor is used to generate labels, which are
then used to update the learner. This enables fast policy eval-
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uation since rollouts are collected from a model-free policy,
so the deep model-based controller can relabel visited states
in a rollout in parallel at the end of a rollout rather than
serially. This combines the sample complexity advantages
of deep model-based methods with the fast policy evaluation
of model-free RL.

The contributions of this work are:

1. New setting for on-policy imitation learning and sublin-
ear regret guarantees if online gradient descent (OGD)
is used to learn from an improving supervisor.

2. A new algorithm, FIT, which involves training a model-
free policy to track an improving deep model-based
RL algorithmic supervisor.

3. Experimental data suggesting that FIT can achieve
final return within 16 % of the method proposed in
(Chua et al., 2018) on both the Reacher and Pusher
MuJoCo domains while utilizing fully off-policy data
from a model-free policy, suggesting the potential for
significant speedups in learning and policy evaluation.

2. Related Work
Imitation learning is an effective method for learning com-
plex behaviors efficiently from the demonstration data of
a supervisor. In this section, we review related work in
online policy learning via imitation and deep model-based
reinforcement learning. We also briefly discuss past work
in supervised and active learning involving learning from
stochastic and multiple supervisors.

2.1. Learning from Stochastic Supervisors

Past work in supervised learning involving learning from
noisy labels (Natarajan et al., 2013; Khetan et al., 2018) typi-
cally has focused mainly on classification. Common settings
are cases where labels either are noise-injected versions of
oracle labels (Natarajan et al., 2013) or labels come from a
variety of different supervisors (Khetan et al., 2018). There
has also been interest in intelligently aggregating the results
of multiple labelers for each instance in a dataset (Raykar
et al., 2009; Richardson & Domingos, 2003; Laskey et al.,
2016a). Finally, there has also been work in active learning
to determine which of a set of supervisors, of varying qual-
ity, to query for labels (Zhang & Chaudhuri, 2015; Yan et al.,
2012). Distinct from these works, we focus specifically on
the imitation learning setting and provide analysis when a
supervisor is improving over time.

2.2. On-Policy Imitation Learning

Online imitation learning algorithms that directly learn re-
active policies from a supervisor were recently popularized
with DAgger in (Ross et al., 2011b). DAgger is an iterative
approach that improves by deploying the learner’s current

policy and receiving supervisor feedback. It was shown
that this approach achieves significant performance gains
in both theory and practice over analogous offline meth-
ods, e.g. (Bagnell, 2015; Pomerleau, 1989). Since DAgger,
a number of practical extensions have been proposed to,
for example, ensure safety (Menda et al., 2017), smooth
controllers (Le et al., 2016), and relieve burden on human
supervisors (Laskey et al., 2016b). Furthermore, online
methods have been applied with both human (Laskey et al.,
2017) and algorithmic supervisors (Pan et al., 2018) such
as MPC. These works typically assume that a single, fixed
supervisor is the guiding policy. We propose a setting in
which the supervisor improves over time, which is common
when learning from human demonstrators or when distilling
an expensive, iteratively improving controller into a policy
that can be efficiently executed in practice.

Since the introduction of DAgger, theoretical analyses of the
online imitation learning algorithms (Ross et al., 2011b; Sun
et al., 2017) have often been embedded in the online learning
framework (Zinkevich, 2003). Recently, convergence results
and stronger guarantees on regret metrics such as dynamic
regret have been shown for a fixed supervisor (Cheng &
Boots, 2018; Lee et al., 2019). We present an analysis of
on-policy imitation learning from a convergent sequence of
supervisors. Specifically, we show that OGD can achieve
comparable guarantees in the improving supervisor setting.

2.3. Deep Model-Based Reinforcement Learning

Deep model-based reinforcement learning has seen signifi-
cant interest due to the improvement in sample complexity
when compared to model-free methods (Deisenroth & Ras-
mussen, 2011; Levine et al., 2015; Nagabandi et al., 2018;
Chua et al., 2018). Recently, Nagabandi et al. (2018) and
Chua et al. (2018) showed that using neural network dy-
namics models to perform MPC gives comparable asymp-
totic performance to model-free reinforcement learning
methods while maintaining the sample complexity gains
of model-based methods. However, solving the MPC ob-
jective over neural network dynamics models often requires
expensive, derivative-free, sampling-based approaches such
as the Cross-Entropy Method (CEM), significantly slowing
down policy evaluation. In this work, we investigate how
distilling MPC into a model-free policy by treating it as
an improving supervisor can be used to accelerate policy
evaluation and thus potentially speed up both training and
evaluation of these methods. The closest related work in this
regard is (Kahn et al., 2017). Here, an MPC policy is trained
with true state information, but constrained to be close to
a model-free policy which only has access to observations.
However, Kahn et al. (2017) assume known dynamics, and
thus the MPC supervisor does not improve with time.
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3. Improving Supervisor Framework and
Analysis

On-policy imitation learning involves executing a policy
in the environment, and then soliciting feedback from a
supervisor on the visited states. This is in contrast to off-
policy imitation learning methods, such as behavior cloning,
in which policy learning is performed entirely on states
from the supervisor’s state distribution rather than that of the
learner. Here we outline a theoretical framework in which
to study on-policy imitation learning with an improving
supervisor and provide an analysis of the static regret of
OGD in this setting.

3.1. Definitions

1. Supervisor: Consider a sequence of N supervi-
sors (labelers), (ψi)

N
i=1, where ψi is any function on

RS → RA, S and A are the sets of allowed states and
actions, and S and A are the dimensionality of these
sets respectively. Supervisor ψi provides labels for
imitation learning policy updates at iteration i.

2. Learner: The learner is represented at iteration i by
a parameterized policy πθi on RS → RA where πθi
is differentiable in the policy parameter θi ∈ K. ΠK
denotes the Euclidean projection operator onto K.

3. Loss: We specifically consider losses of the form

li(πθi , ψ) = Es∈{Si}‖πθi(s)− ψ(s)‖2

where ‖·‖ is the 2-norm and {Si} is the set of states in
the minibatch processed at iteration i. {Si} is sampled
from the distribution of trajectories p(τ |θi) generated
by πθi . All gradients of li are taken with respect to θ
in the first argument and not the θi parameterizing the
trajectory distribution. Specifically, ∇θli(πθi , ψ) :=
∇θli(πθ, ψ)|θ=θi .

4. Regret: We analyze the regret of FIT with respect to
the best policy in hindsight that has labels from the final
supervisor ψN for the whole dataset. Note, however,
that during learning, labels are provided not by ψN ,
but by supervisor ψi at iteration i. This results in a
more difficult regret metric than is typically considered
in static regret analysis for on-policy imitation learning
since labels are provided by the improving supervisor
but regret is evaluated with respect to the best policy
given labels from the final supervisor.

RegretN =

N∑
i=1

li(πθi , ψN )−
N∑
i=1

li(πθ? , ψN )

where θ? = arg min
θ∈K

N∑
i=1

li(πθ, ψN )

3.2. Assumptions

In our regret analysis we adopt the following standard as-
sumptions.

1. Strongly convex losses: lθi(πθi , ψ) is strongly convex
with respect to θ with parameter α ∈ R+. Precisely,
we assume that

li(πθ2 , ψ) ≥ li(πθ1 , ψ) +∇θli(πθ1 , ψ)T (θ2 − θ1)+
α

2
‖θ2 − θ1‖22 ∀ θ1, θ2 ∈ K

2. Bounded parameter space diameter: ‖θi − θj‖ ≤
D ∀ θi, θj ∈ K where D ∈ R+.

3. Bounded action space: The diameter of the action
space A of the policy is bounded, specifically that

‖a1 − a2‖2 ≤ δ ∀ a1, a2 ∈ A

where δ ∈ R+.
4. Bounded operator norm of policy Jacobian:
‖∇θπθi(s)‖ ≤ G for all s ∈ S where G ∈ R+ and
||·|| is a subadditive operator norm. Note that this also
implies that the loss function gradients are bounded
since

‖∇θli(πθ, ψ)‖ =

‖Es∈{Si}
[
2(∇θπθ(s))T (πθ(s)− ψ(s))

]
‖ ≤

Es∈{Si}
[
‖2(∇θπθ(s))T (πθ(s)− ψ(s))‖

]
by convexity of norms ‖·‖ and Jensen’s inequality.

Then, we have that

‖(∇θπθ(s))T (πθ(s)− ψ(s))‖ ≤
‖∇θπθ(s)‖‖πθ(s)− ψ(s)‖ ≤ Gδ

due to Assumption 3 and subadditivity. Thus, we have
that ∀θ, θi ∈ K,∀ψ

‖∇θli(πθ, ψ)‖ ≤ 2Gδ.

The assumptions in this section and the loss formulation are
consistent with those in Hazan et al. (2016) and Osa et al.
(2018) for analysis of online projected gradient descent and
imitation learning algorithms.

3.3. Regret Analysis

To motivate FIT and the idea of learning from an improving
supervisor, we show that given that the learner is represented
by a strongly convex policy and satisfies other standard con-
ditions, OGD has sublinear static regret with respect to the
best policy in hindsight with labels from the final supervisor
policy. Hazan et al. (2016) derive sublinear regret guarantees
for OGD under similar assumptions with a static supervi-
sor; we extend this analysis by showing that the additional
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asymptotic regret depends only on the convergence rate of
the supervisor. Note that this is different from the type of
regret analysis in (Ross et al., 2011a) and other on-policy
imitation learning algorithms since in this setting, labels
come not from a fixed supervisor, but from an improving
supervisor during learning.

Theorem 1. For loss function li (πθi , ψ) satisfying the
above assumptions, the expected static regret of OGD with
labels from (ψi)

N
i=1 can be bounded above as follows:

RegretN ≤
2G2δ2

α

(
1 + logN

)
+ 2GD

N∑
i=1

Es∈{Si}‖ψN (s)− ψi(s)‖

Proof of Theorem 1 can be found in the appendix.

Theorem 2. If Es∈{Si}‖ψi(s)− ψN (s)‖ ≤ fi w.p. 1
∀N > i for some sequence (fi)

N
i=1 where limi→∞ fi = 0,

the expected static regret of OGD is sublinear:

N∑
i=1

Es∈{Si}‖(ψN (s)− ψi(s)‖ = O(N)

Proof of Theorem 2 can be found in the appendix.

Given Theorem 1, if we choose fi = C
i for C ∈ R+, we

pay no extra asymptotic penalty in regret, achieving a regret
bound of (

2G2δ2

α
+ 2GDC

)(
1 + logN

)
(1)

We also note that any faster rate than fi = C
i also avoids

additional asymptotic regret.

This motivates further exploration of on-policy imitation
learning algorithms in the improving supervisor setting. See
appendix for experimental studies on empirical regret and
the effect of label quantity and quality on learning results.

4. Follow the Improving Teacher (FIT)
Motivated by the analysis in Section 3, we present Follow
the Improving Teacher (FIT), which enables accelerated pol-
icy evaluation for deep model-based reinforcement learning.
Instead of collecting policy rollouts using an an algorith-
mic supervisor that is expensive to query online, FIT uses
a model-free policy to collect rollouts on each iteration,
but labels for each state in the rollout are provided by the
supervisor to refit the policy. FIT can be thought of as a
meta-algorithm, which updates the model-free policy and
algorithmic supervisor at each iteration using updates given
by an on-policy imitation learning algorithm trained via la-
bels from an off-policy reinforcement learning algorithm,

which itself is updated using data from the model-free roll-
outs. Note that if the algorithmic supervisor has slow policy
evaluation, such a procedure can speed up policy learning
since the supervisor can label each state in a given rollout
in parallel after the rollout has completed rather than seri-
ally at each timestep of every policy rollout. If using deep
MPC algorithms such as those presented in (Chua et al.,
2018; Nagabandi et al., 2018) as the algorithmic supervisor,
the supervisor is updated by updating the dynamics model
used for MPC with transitions collected from the learner
rollouts. In general, any off-policy algorithmic supervisor
can be used. There are also many possible choices for the
on-policy imitation learning algorithm, such as OGD or
DAgger. This is illustrated in Algorithm 1 below.

Algorithm 1 Follow the Improving Teacher (FIT)

Require: Randomly initialized off-policy algorithmic
supervisor, ψ0, model-free policy πθ0
for i ∈ {1, . . . , N} do

Sample T step trajectory from πθi
Get dataset Di = {(s, ψi(s))}
Update πθi+1

and ψi+1 using Di
end for
return πθN

5. Experiments
In all experiments, we run FIT using the model-based deep
reinforcement learning algorithm, PETS (Chua et al., 2018),
as the improving supervisor, DAgger as the on-policy imita-
tion learning algorithm, and squared loss between learner
and supervisor as the imitation learning loss function. We
consider the PR2 Reacher and Pusher MuJoCo domains
from (Chua et al., 2018). See the appendix for further de-
tails on the parameters used for PETS.

For experiments, task return is reported for FIT, the super-
visor, and PETS. Returns for FIT and the supervisor are
computed by rolling out the model-free learner policy and
model-based controller after each training iteration and com-
puting the task return respectively. Note that the supervisor
here is trained on off-policy data from the learner, so the
difference between the learner and supervisor performance
measures how effectively the learner is able to track the
supervisor performance. Furthermore, we also report task
return for the original PETS algorithm, which is trained
on data from its own policy. Thus, the difference in per-
formance between the supervisor and PETS measures how
important on-policy data is for supervisor performance.

In Figure 1, we show the empirical regret and return for FIT,
where the learner is represented with a linear policy trained
via ridge-regression with regularization parameter α = 1.
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(a) Empirical Regret of FIT on
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Figure 1. FIT with a linear learner policy: We first show the
empirical regret of FIT for (a) Reacher and (b) Pusher, which show
clearly sublinear growth as expected. We also show training curves
for the learner, supervisor and PETS on (c) Reacher and (d) Pusher.
FIT is not only able to successfully track the supervisor on both
domains, but also performs well compared to PETS. However,
performance is slightly better on Reacher.

We observe that the empirical regret shows a sub-linear
growth pattern for both Reacher and Pusher as shown in Fig-
ures 1a and 1b. We also see in Figures 1c and 1d that for both
tasks, that not only is the learner able to successfully track
the supervisor, but also that the supervisor performance is
not significantly harmed by training on off-policy data in
these settings. However, we notice that for the Pusher task,
both the learner and supervisor converge to a slightly worse
final return than PETS.

Finally, to determine whether FIT can effectively scale to
more complex learner policy representations and to deter-
mine whether a more expressive learner could close the
gap between FIT and PETS on the Pusher task, we repeat
the above experiments with the learner represented by a
neural network with 2 hidden layers with 20 hidden units
each, ReLU activations, and trained using the Adam opti-
mizer. Results are shown in Figure 2. The learner is able
to match the supervisor and PETS closely for both tasks,
demonstrating the efficacy of FIT in these settings.

This result is promising because if the model-free learner
policy is able to achieve similar performance when tracking
a model-based reinforcement learning supervisor compared
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Figure 2. FIT with a neural network learner policy: Training
curves for the learner, supervisor and PETS on (a) Reacher and (b)
Pusher. We see that FIT is not only able to successfully track the
supervisor on both domains, but also performs well compared to
PETS for both tasks.

to the supervisor on its own distribution, we achieve the
sample complexity benefits of model-based reinforcement
learning while achieving the low online computation time
of model-free methods. This has potential to accelerate both
training and testing times for model-based reinforcement
learning algorithms by simply labeling states visited by a
model-free policy in parallel after each rollout. We hope
to explore this further in future work. As an initial check
to determine the potential speedup that FIT could provide,
we measure the average rollout time of the model-based
controller PETS and the model-free learner policy over 50
rollouts for the Reacher task on a desktop running Ubuntu
16.04 with a 3.60 GHz Intel Core i7-6850K, 12 core CPU
and an NVIDIA GeForce GTX 1080. On the Reacher task,
we find that PETS has an average rollout time of 25.25 sec-
onds while the model-free policy has an average rollout time
of 0.324 seconds, demonstrating that a significant speedup
is possible with a fully parallel implementation.

6. Conclusion
We introduce a new setting for on-policy imitation learn-
ing in which the expert policy is not fixed, but improving
over time. We show that if the learner policy is strongly
convex, and has bounded parameter space diameter, action
space, and Jacobian operator norm, OGD with labels from
an improving supervisor yields sublinear regret with respect
to the best policy in hindsight trained with labels from the
final supervisor. We use this to motivate a new algorithm,
FIT, which provides the sample complexity benefits of deep
MBRL while enabling the fast policy evaluation time of
model-free methods. In future work, we hope to provide
regret analysis for stochastic supervisors with specific noise
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profiles and consider a more general class of surrogate loss
functions. We are also interested in implementing FIT in a
parallelized manner to show that learning from an improv-
ing supervisor allows substantial speedup in wall-clock time
without significantly affecting task performance.
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8. Appendix
8.1. Proof of Theorem 1

We proceed similarly to Hazan et al. (2016). The parameter update
via online projected gradient descent is given by:

‖θi+1 − θ?‖2 =

‖ΠK(θi − ηi∇θli (πθi , ψi))− θ
?‖2 ≤

‖θi − ηi∇θli (πθi , ψi)− θ
?‖2

(2)

Expanding the above gives:

‖θi+1 − θ?‖2 ≤
‖θi − θ?‖2 + η2i ‖∇θli (πθi , ψi)‖

2−

2ηi(∇θli (πθi , ψi))
T (θi − θ?)

(3)

Rearranging this gives:

2(∇θli (πθi , ψi))
T (θi − θ?) ≤

‖θi − θ?‖2 − ‖θi+1 − θ?‖2

ηi
+ 4ηiG

2δ2
(4)

where ‖∇θli (πθi , ψi)‖ ≤ 2Gδ by Assumption 4.

Given that the loss is of form:

li(πθi , ψi) = Es∈{Si}‖πθi(s)− ψi(s)‖
2

we can relate the gradients of the loss with labels from the final
supervisor ψN and from the labeler at iteration i (ψi) as follows:

∇θli (πθi , ψi) =

Es∈{Si}

[
2(∇θπθi(s))

T (πθi(s)− ψi(s))
] (5)

∇θli (πθi , ψN ) =

Es∈{Si}

[
2(∇θπθi(s))

T (πθi(s)− ψN (s))
] (6)

We can compute the difference of the loss gradients as follows:

∇θli (πθi , ψi)−∇θli (πθi , ψN ) =

Es∈{Si}

[
2(∇θπθi(s))

T (ψN (s)− ψi(s))
] (7)

so

∇θli (πθi , ψi) = ∇θli (πθi , ψN ) +

Es∈{Si}

[
2(∇θπθi(s))

T (ψN (s)− ψi(s))
] (8)

Thus, by substituting the right-hand side of equation 8 into the
left-hand side of equation 4, we obtain:

2
(
∇θli (πθi , ψN )

+ Es∈{Si}

[
2(∇θπθi(s))

T (ψN (s)− ψi(s))
] )T

(θi − θ?) ≤

‖θi − θ?‖2 − ‖θi+1 − θ?‖2

ηi
+ 4ηiG

2δ2

(9)

We can rearrange the above to:

2(∇θli (πθi , ψN ))T (θi − θ?) ≤
‖θi − θ?‖2 − ‖θi+1 − θ?‖2

ηi
+ 4ηiG

2δ2+

Es∈{Si}

[
4(∇θπθi(s))

T (ψN (s)− ψi(s))
]T

(θ? − θi)

(10)

Applying Cauchy–Schwarz and subadditivity gives:

Es∈{Si}

[
4(∇θπθi(s))

T (ψN (s)− ψi(s))
]T

(θ? − θi) ≤

Es∈{Si}4‖∇θπθi(s))‖‖ψN (s)− ψi(s)‖‖θ? − θi‖
(11)

where ‖∇θπθi(s))‖ is the operator norm of∇θπθi(s).

Using Assumption 2 and Assumption 4, we have that

Es∈{Si}4‖∇θπθi(s)‖‖ψN (s)− ψi(s)‖‖θ? − θi‖ ≤
4DEs∈{Si}‖∇θπθi(s))‖‖ψN (s)− ψi(s)‖ ≤
4GDEs∈{Si}‖ψN (s)− ψi(s)‖

(12)

Thus, we can rewrite equation 10 as follows:

∇θli (πθi , ψN )T (θi − θ?) ≤
‖θi − θ?‖2 − ‖θi+1 − θ?‖2

2ηi
+ 2ηiG

2δ2

+ 2GDEs∈{Si}‖(ψN (s)− ψi(s))‖

(13)

Now, we can use the strong convexity of the loss function (As-
sumption 1) to obtain the following bound for α > 0:

∇θli (πθi , ψN )T (θi − θ?)−
α

2
‖θi − θ∗‖22 ≥

li (πθi , ψN )− li (πθ? , ψN )
(14)

Now using strong convexity and equation 13 gives:

li (πθi , ψN )− li (πθ? , ψN ) ≤
‖θi − θ?‖2 − ‖θi+1 − θ?‖2

2ηi
+ 2ηiG

2δ2+

2GDEs∈{Si}‖ψN (s)− ψi(s)‖ −
α

2
‖θi − θ∗‖22

(15)

Now, summing each side over the iterations gives:

N∑
i=1

[li (πθi , ψN )− li (πθ? , ψN )] ≤

N∑
i=1

[
‖θi − θ?‖2 − ‖θi+1 − θ?‖2

2ηi
+ 2ηiG

2δ2

+ 2GDEs∈{Si}‖ψN (s)− ψi(s)‖ −
α

2
‖θi − θ∗‖22

]
(16)
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Now, we can explicitly represent this in terms of a telescoping sum
as follows:

N∑
i=1

[
‖θi − θ?‖2 − ‖θi+1 − θ?‖2

2ηi
+ 2ηiG

2δ2

+ 2GDEs∈{Si}‖ψN (s)− ψi(s)‖ −
α

2
‖θi − θ∗‖22

]
≤

N∑
i=1

[
‖θi − θ?‖2

2

(
1

ηi
− 1

ηi−1
− α

)
+ 2ηiG

2δ2

+ 2GDEs∈{Si}‖ψN (s)− ψi(s)‖
]

(17)

Using ηi = 1
αi

for i > 0 and 1
η0

= 0, we see that

N∑
i=1

[
‖θi − θ?‖2

2

(
1

ηi
− 1

ηi−1
− α

)]
= 0

Thus, we have:
N∑
i=1

[li (πθi , ψN )− li (πθ? , ψN )] ≤

2G2δ2
N∑
i=1

ηi + 2GD

N∑
i=1

Es∈{Si}‖ψN (s)− ψi(s)‖

(18)

so

RegretN =

N∑
i=1

[li (πθi , ψN )− li (πθ? , ψN )] ≤

2G2δ2

α

(
1 + logN

)
+ 2GD

N∑
i=1

Es∈{Si}‖ψN (s)− ψi(s)‖

(19)

8.2. Proof of Theorem 2

If
Es∈{Si}‖ψi(s)− ψN (s)‖ ≤ fi

w.p. 1 ∀N > i for some sequence (fi)
N
i=1 where limi→∞ fi = 0,

then this implies that

N∑
i=1

Es∈{Si}‖(ψN (s)− ψi(s)‖ ≤
N∑
i=1

fi

The Additive Cesàro’s Theorem states that if the sequence (an)∞n
has a limit, then

limn→∞
a1 + a2 . . . an

n
= limn→∞an

Thus, we see that if limi→∞ fi = 0, then it must be the case
that limN→∞

1
N

∑N
i=1 fi = 0. This shows that for any (fi)

N
i=1

converging to 0, it must be the case that

N∑
i=1

Es∈{Si}‖ψN (s)− ψi(s)‖ ≤
N∑
i=1

fi = O(N)

Thus, based on the regret bound in Theorem 1, we can achieve
sublinear regret for any sequence (fi)

N
i=1 which converges to 0.

8.3. PETS Details

PETS learns an ensemble of neural network dynamics models
using sampled transitions and updates them on-policy to better
reflect the dynamics local to the learned policy’s state distribution.
MPC is run over the learned dynamics to select actions for the
next iteration. For both the Reacher and Pusher environments, an
ensemble of 5 neural networks with 3 hidden layers, each with 500
hidden units are used to represent the dynamics model. We use an
MPC planning horizon of length 25 for both environments. Chua
et al. (2018) contains further details on training PETS.

8.4. Experimental Study of OGD on Cartpole with
iLQR Expert

Here, we study the performance of FIT on a Cartpole task with
known dynamics. We use a linear policy trained via ridge-
regression with regularization parameter α = 1 to represent the
learner and an iLQR controller for the supervisor. Since the iLQR
controller has good global performance in this domain, we study
the effect of a specific supervisor convergence rate by explicitly
adding progressively smaller action bias to the iLQR controller to
simulate a supervisor improving at a specific rate. OGD is used for
policy updates, so this experiment exactly satisfies the assumptions
of the theoretical analysis. For these experiments, we simulate a
supervisor improvement rate corresponding to fi = C√

i
, which

gives expected regret on the order of O(
√
N).

We show the empirical regret with an improving iLQR controller
on Cartpole in Figure 3a. As expected, the regret shows a clear
sublinear pattern. Furthermore, to study the effect of poor quality
initial labels on learner performance, we show the average squared
difference between the learner and supervisor actions for a set
of learners that are each initialized at progressively later OGD
iterations. The idea here is that learners which are initialized later
will have access to less data, but this data will be from a higher
quality supervisor. Thus, we expect to see a tradeoff between
data quality and quantity, where sufficient amounts of low quality
data may actually mislead the learner even if there is enough
total data, while a very small amount of high quality data may be
insufficient to successfully match supervisor performance. Results
are shown in Figure 3b. Learners that are initialized earlier take
longer to converge and still exhibit relatively noisy performance
while those initialized later on appear to converge relatively quickly
despite having fewer supervisor labels. It is possible that on a
more difficult domain, fewer supervisor labels would have a more
adverse effect on learner performance. We hope to investigate
this tradeoff between data quality and quantity, specifically with
regards to how a learner can best determine which supervisor labels
to use when the supervisor is time-varying, in future work.
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Figure 3. Performance of OGD on Cartpole with known dy-
namics: (a) Empirical Regret of OGD on Cartpole with known
dynamics and an iLQR teacher with action bias chosen to match
supervisor convergence rate given by fi = C√

i
. Here, we see

that the regret shows a clear sublinear pattern as expected; (b)
Average squared difference between actions chosen by the learner
and supervisor for a set of learners that are each initialized at
progressively later OGD iterations. As expected, learners that
are initialized earlier on take longer to converge and exhibit more
noisy performance due to the low quality initial supervisor labels,
while learners that are initialized later converge more quickly.

Table 1. Learner, Supervisor, and PETS final training re-
wards: We report (learner final reward, supervisor final reward,
PETS final reward) for the Reacher and Pusher tasks after 100
training iterations with a linear policy and neural network policy.
Although there is no significant difference in the policy represen-
tations for Reacher, for Pusher the increased expressiveness of
the neural network policy does improve the learner’s performance.
For both environments, the learner is able to achieve a final return
within 16 % of PETS, even with completely off-policy data.

TASK REACHER PUSHER

LINEAR POLICY (-34.70, -45.20, -44.08) (-77.33, -98.63, -59.41)
NEURAL NET POLICY (-31.67, -49.21, -44.08) (-70.48, -61.72, -59.41)

8.5. FIT Experimental Results on Reacher/Pusher

The final return achieved by FIT, the supervisor, and PETS cor-
responding to Figures 1 and 2 is shown in Table 1. Since FITis
able to match the performance PETS relatively closely even when
trained with completely off-policy data, this indicates that there is
significant potential for accelerating learning and policy evaluation
without significantly affecting task performance.


