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Abstract

We consider Online Convex Optimization (OCO)
in the setting where the costs are m-strongly
convex and the online learner pays a switch-
ing cost for changing decisions between rounds.
We show that the recently proposed Online Bal-
anced Descent (OBD) algorithm is constant com-
petitive in this setting, with competitive ratio
3 4+ O(1/m), irrespective of the ambient dimen-
sion. We demonstrate the generality of our ap-
proach by showing that the OBD framework can
be used to construct competitive algorithms for
a variety of online problems across learning and
control, including online variants of ridge regres-
sion, logistic regression, maximum likelihood es-
timation, and LQR control.

1. Introduction

In this paper we study the problem of smoothed online con-
vex optimization (SOCO), a variant of OCO where the on-
line learner incurs a switching cost for changing its actions
between rounds. More concretely, the online learner plays
a series of rounds ¢ = 1...7. In each round, the learner
receives a convex loss function f, picks a point x; from a
convex action space Y C R?, and pays a hitting cost fi(x;)
as well as a switching cost ¢(xy, x¢—1) which penalizes the
learner for changing its action between rounds.

This problem was first introduced in the context of the
dynamic management of service capacity in data centers
(LWAT11), where the switching costs represent the perfor-
mance and wear-and-tear costs associated with changing
server configurations. Since then, SOCO has attracted con-
siderable interest, both theoretical and applied, due to its
use in dozens of applications across learning, distributed
systems, networking, and control, such as speech anima-
tion (KYTM15), video streaming (JdV12), management of
electric vehicle charging (KG14), geographical load bal-
ancing (LLWA12), and multi-timescale control (GCW17).
See (CGW18) for an extensive list of applications.

Unfortunately, despite a large and growing literature, all ex-
isting results identifying competitive algorithms for SOCO
either (i) place strong restrictions on the action space, (ii),

place strong restrictions on the class of loss functions,
or (iii) require algorithms to make use of predictions of
future cost functions. For example, a series of papers
(LWAT11), (BGK™15) developed competitive algorithms
for one-dimensional action spaces. Until earlier this year
there were no known algorithms that were competitive for
SOCO beyond one dimension without requiring the use of
predictions. Finally, (CGW18) presented the first algorithm
that is constant-competitive beyond one dimension, but the
algorithm was shown to be constant competitive only in
the case of polyhedral cost functions, a restrictive class that
does not include most loss functions used in machine learn-
ing. Beyond this result, the most general positive results all
assume predictions of future cost functions are available,
e.g. (LLWA12), (CAWT15), (CCL*16), (LQLI18).

The existing work on SOCO highlights a crucial open ques-
tion: Does there exist a competitive algorithm for high-
dimensional SOCO problems with cost functions that cap-
ture standard losses for online learning problems, e.g., lo-
gistic loss or least-squares loss?

In this paper we answer this question by proving that the
recently introduced Online Balanced Descent (OBD) al-
gorithm is constant-competitive for SOCO with strongly
convex costs. Additionally, highlighting the importance of
the class of strongly convex costs, we show that the OBD
framework can be used to construct the first competitive al-
gorithms for problems as diverse as online ridge regression,
online logistic regression, and LQR control, which was not
possible with previous approaches.

Contributions of this paper. This paper makes two main
contributions to the literature on SOCO.

First, in Section 3 we show that OBD is constant compet-
itive for SOCO when the costs are strongly convex (The-
orem 1). This establishes OBD as the first constant com-
petitive algorithm for strongly convex costs beyond one-
dimensional action spaces. The key to our proof is a novel
potential function argument that exploits essential proper-
ties of /o geometry. In particular, controlling the change in
potential rests upon comparing the side lengths of certain
triangles (see Figure 1), which can be done via the Law of
Cosines.

Second, in Section 4 we show novel applications of OBD
to problems arising in statistics, learning, and control, in-



An Online Algorithm for Smoothed Regression and LQR Control

cluding ridge regression, logistic regression, and maximum
likelihood estimation. A highlight of this section is a reduc-
tion of LQR control to SOCO, giving the first competitive
algorithm for LQR control (results for LQR control typi-
cally make strong distributional assumptions). We empha-
size that none of these applications could be handled by
previous work on SOCO, which highlights the importance
of deriving a competitive bound for OBD in the strongly
convex setting.

Related work. There is a vast literature on OCO; for
a recent survey see (HY16). OCO with switching costs
was first studied in the scalar setting in (LWAT11), which
used SOCO to model dynamic right-sizing in data centers
and gave a 3-competitive algorithm. In subsequent work,
(BGK™15) improved the competitive ratio to 2, also in the
scalar setting. The first constant-competitive algorithm be-
yond one dimension was given in (CGW18), which intro-
duced the OBD framework and showed that it was com-
petitive for SOCO with polyhedral costs. The results in
this paper highlight that OBD is also constant-competitive
for strongly convex cost functions, a class that is particu-
larly important for learning and control applications, and is
wholly disjoint from the class of polyhedral cost functions
when the minimizer of the cost function is zero.

A special case of SOCO is the Convex Body Chasing
problem, first introduced in (FL93). The connection be-
tween Convex Body Chasing and SOCO was observed
in (ABNT16). A recent series of papers (BBET18),
(ABC™18) identified competitive algorithms in the setting
where the bodies are nested.

Before this paper, the only class of SOCO problems for
which positive results for strongly convex cost functions
existed is when the learner had access to accurate pre-
dictions of future cost functions. The study of SOCO
with predictions began with (LLWA12) and then contin-
ued with a stream of work in the following years, e.g.,
(CAWT15; CCL*16). The most relevant to this work is
(LQL18), which shows a lower bound on the dynamic re-
gret of SOCO with strongly convex cost functions.

In Section 4 we apply OBD to diverse problems like maxi-
mum likelihood estimation and LQR control. These prob-
lems have been widely studied; we refer the reader to
(BV04) and (AM10) for a survey.

Finally, we note that SOCO can be viewed as a continuous
version of the classic Metrical Task Systems (MTS) prob-
lem, one of the most widely studied problems in the online
algorithms community, e.g (BLS92), (BBBT97), (BB00).
A special case of the MTS is the celebrated k-server prob-
lem, first proposed in (MMS90), which has received signif-
icant attention in recent years, for example in (BCL*18).

2. Smoothed Online Convex Optimization

An instance of SOCO consists of a convex action set Y C
R, an initial point o € X, a sequence of non-negative
convex costs fi...fr : R? — R*, and a non-negative
function ¢ : R% x R — R*. In each round ¢, the online
learner observes the cost function f;, picks a point z;, and
pays the sum of the hitting cost fi(x;) and the movement
or switching cost ¢(x¢,x1—1). The switching cost acts as
a regularizer, penalizing the online learner for changing its
decisions between rounds. The goal of the online learner
is to minimize its aggregate cost so as to approximate the
offline optimal cost:

T

Pﬂin Z fi(xs) + c(ze, x6-1)

More generally, x; could be matrix-valued and f;, ¢ could
be functions on matrices. Note that we make no restric-
tions on the sequence of cost functions f7 ... fp other than
strong convexity; they could be adversarial, or even adap-
tively chosen to hurt the online learner.

We emphasize that SOCO differs from OCO in two im-
portant ways. Firstly, unlike in OCO, the costs incurred
in each round of SOCO depend on the previous choice,
coupling the online learner’s decisions across rounds. Sec-
ondly, the online learner can observe the cost function f;
before picking x;. This is a standard assumption in the
SOCO literature, e.g. in (BGK*15), (LWATI11), (CGW18)
and isolates the complexity of SOCO onto the coupling
across timesteps due to the switching costs instead of the
uncertainty in the costs.

In this paper, we measure the performance of OBD in terms
of its dynamic regret and competitive ratio. The dynamic
regret is defined as

D filwe) + elwe,memn) = | D folw) + elaf, 27_y)

t=1 t=1

Here z; ... x7 are the points picked by the online learner
and x7 ...z7 are the offline optimal points. We note that
this is a more natural performance metric for SOCO than
static regret, since the main motivation for SOCO is to un-
derstand the effects of switching costs on online learning.
In contrast, in the static regret setting the comparator never
moves and hence incurs no switching cost, making it a less
ideal performance metric for SOCO.

Instead of using an additive metric the competitive ratio
uses a multiplicative metric:

S @) + e(me, wq)
Sy filap) + clag,z_y)
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We note that (ABLT13) showed that, in general, no online
algorithm can have both sublinear static regret and constant
competitive ratio.

Much attention has been focused on the setting where the
switching cost is a norm: c¢(z¢, x1—1) = ||x — xe-1]],
e.g. (LWAT11), (BGK'15). Note that in the one-
dimensional setting, all £, norms are identical, making the
choice of norm somewhat vacuous. The first algorithm to
work beyond the one dimensional setting was proposed in
(CGW18), which considered a setting where the switching
cost is given by the Euclidean distance and the loss func-
tions are polyhedral, meaning that they at grow at least lin-
early as one moves away from the minimizer.

We instead focus on the setting where the cost functions
f1... fr are m-strongly convex with respect to the Eu-
clidean norm and the switching cost is quadratic:

1
c(ze,mm1) = = llze — 2|3
2

In Section 4, we show that OBD can be used with many im-
portant loss functions, such as the least-squares loss and the
{5 regularized logistic loss, none of which could be handled
by previous work.

We assume that the domain  is all of R<. Note that this
presents no real restriction, since we can always define
fi(x) = oo for all z ¢ x. The objective becomes

T
1 2
min ) + =z — e |
xl...xTeRd;'ft( t) 2” t t 1||2 ( )
Notation. We use || - || to denote the {5 norm. We often

use H; and M, to denote the hitting cost f;(x;) and the
movement cost % ||z, — x¢_1]|%, respectively. The offline
costs H;} and M} are defined analogously. We let ALG
denote the total cost incurred by OBD across all rounds
and define O PT to be the analogous offline cost. We let v,
denote the minimizer of the cost function f;.

Algorithm 1 Online Balanced Descent (OBD)

1: fort=1,...,T do

2:  Receive f;. Let v; be the minimizer of f;.

30 Letz(l) = Hgi(w¢—1). Initialize I = f;(vy). Here
K! is the I-sublevel set of f;, ie, K! = {z |
Je(x) <1}

4:  Increase [. Stop either when x(¢) = v; or %Hx(l) -
x5 = BL.

5: Setay = x(l).

6: end for

3. A Competitive Algorithm

Our main technical result shows that a recently proposed
algorithm, Online Balanced Descent (OBD), is constant
competitive for SOCO problems with strongly convex cost
functions.

OBD was introduced in (CGW18), where it was analyzed
for the class of polyhedral costs. The detailed workings of
OBD are summarized in Algorithm 1. The key insight of
OBD is to exploit the full geometry of the level sets of the
current cost function f; when choosing the point z; in such
a way as to take switching costs into account.

OBD works by iteratively projecting the previously cho-
sen point onto a level set of the current cost function. The
level set K; picked by OBD is the level set such that the
switching cost incurred while traveling from z;_; to K} is
equal to 8 f;(x;), where z; is the projection onto K; and
B is the balance parameter which can be tuned to get dif-
ferent performance guarantees. We note that OBD can be
efficiently implemented via a binary search over the level
sets (CGW18).

We can now state our main result, a bound on the competi-
tive ratio of OBD for strongly convex costs.

Theorem 1. OBD is competitive for the problem (1) for all
8> %. Furthermore, if (§ is set to be 2 + Lﬂg, the compet-
itive ratio of OBD is at most 3 + O(1/m), irrespective of
the ambient dimension.

We note that (CGW18) proved a bound on the competitive
ratio of OBD of the form 34+ O(1/«) where o measures the
“steepness” of the costs. While this superficially resembles
the bound in Theorem 1, we emphasize that the settings are
quite different; their work applied to the class of polyhe-
dral cost functions while we focus on strongly convex cost
functions. In the case where the cost functions have mini-
mum value zero these classes are wholly disjoint. We are
led to consider strongly convex costs due to the fact many
common learning and control problems have loss functions
that are strongly convex (e.g., see Section 5). Until this
paper, there existed no competitive algorithms for SOCO
problems with strongly convex costs.
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4. Applications

In this section we show several applications of OBD to di-
verse problems across learning and control. We emphasize
that none of these applications would be possible without a
competitive algorithm for strongly convex costs, which has
not been attainable with previous approaches.

4.1. Smoothed Online Regression

We consider the problem of a learner who wishes to fit a
series of regularized regressors or classifiers to a changing
dataset, without changing the estimators too much between
rounds. This is naturally modeled by the objective

T
3 )\1 2 )\2 9
0:) + —- |6 22116, — 6, 2
o B 2S00+ O + 1~ 0al @)

Here f; represents an estimation or classification task at
timestep ¢, 6; is the regressor at time ¢, and A1, Ay are
parameters that control the strength of the /5 and smooth-
ing regularizations, respectively. We impose no constraint
on f; other than convexity; in particular, f; need not
be strongly convex (though if f; happens to be strongly
convex, we can optionally drop the regularization term
% 16:]|?). OBD gives a constant-competitive algorithm in
this setting:

Corollary 1. The competitive ratio of OBD with balance
parameter 3 = 2 + 2 on problem 2 is 3 + O(Az/A1).

Before we turn to the proof, we emphasize that the bound
on competitive ratio does not vary with respect to dimen-
sion; hence OBD can be applied to estimation problems
with thousands or millions of parameters.

Proof. We first divide the objective by A,. Notice that
the function f;(6) = 5= fi(60) + L [0:]3 is (A1/Aa)-
strongly convex in 6 whenever f; is convex, hence The-
orem 1 implies that OBD achieves competitive ratio 3 +
00/ M). O

Our approach applies to many common learning problems:

e Ridge Regression. We take f;(0) = || X0 — y:||°,
where X; € R™*? is a data matrix and y; € R" is the
response variable.

e Logistic Regression. We take fi(0) =
— ity log (14 e¥it0 " 2it) where z;, € R is
a vector of features, y; , € {0, 1} is a binary outcome,
and n; is the number of samples in round ¢. OBD
hence fits a series of binary classifiers which don’t
vary too much between rounds. Our approach easily

extends to the multiclass setting as well.

e Maximum Likelihood Estimation. More generally,
we can perform smoothed online maximum likelihood
estimation using OBD. Here 6; are parameters of a
model and f;(6;) is the likelihood function of some
dataset at time ¢. If the likelihood function is convex
then OBD can be applied. For example, the problem
of estimating a series of covariance matrices 3, of a
series of Gaussian distributions A/ (0, 3;) given inde-
pendent samples arranged as a matrix Y; can be posed
as the problem

mzin(ZY) —logdet ¥

which is a convex optimization problem (see (BV04),
p- 357). We can apply OBD over the set of positive
definite matrices to find a series of covariance matri-
ces X that fit the data well but don’t vary too much
between rounds.

4.2. Linear Quadratic Regulator (LQR) control

Our second application comes from the controls commu-
nity. Consider the classical problem of LQR control:

T
. 1, 1,
u{mBT tE_l §xtQtzt + iutRut

with dynamics given by
Ti41 = Al’t + B’U,t —+ wy

Here u is a control action, x a state variable, and )y, R are
assumed to be positive definite. Usually, the noise incre-
ments w, are assumed to be i.i.d. Gaussian, and the goal
is to design a control policy to minimize the expected cost.
Instead of an in-expectation result, we can use OBD to de-
sign a controller with a strong pathwise guarantee, with
no distributional or boundedness assumptions on the noise.
We focus on the setting where A = I, i.e. the system is
stationary in the absence of noise or control actions.

Corollary 2. Suppose that A = I and B is invertible, and
the matrices QQ; each have their lowest eigenvalue bounded
below by A > 0. The LOR problem can be rewritten as a
SOCO problem, and the competitive ratio of OBD is

3+0 (Am‘”(R) > .
Amin (B)2A

Note that A, (B) can be interpreted as a lower bound on
the gain of the control action w; intuitively, systems with
high control gain are easier to regulate, since each con-
trol action gets amplified. Similarly, it is intuitive that as
Amaz(R) decreases the competitive ratio improves, since
R controls the cost incurred by using the controller.
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Appendices

Proof of Theorem 1

To prove Theorem 1, we use the potential function
d(x,z*) = nllz — 2*||>. Clearly ¢(z,2*) > 0 and
¢(xo, x§) = 0. Before we turn to the proof of Theorem 1,
we prove a series of crucial lemmas relating to the potential
function. Lemmas 1 and 2 show how the potential changes
depending on the relative positions of its arguments, and
highlight the role of the geometry associated with the /o
norm. Lemma 3 relates the potential to the hitting costs at
every timestep.

Lemma 1. The change in potential satisfies

¢(a> C) - ¢(a7 b) < _¢(b7 C)

for all a,b,c € R such that the angle 0 between the vec-
tors a — cand b — ¢ lies in [/2, 37 /2).

Proof. Consider the triangle with vertices a, b, c. Accord-
ing to the Law of Cosines we have:

lla=bl* = lla = ¢ + [Ib— c]|* = 2[la — c[|[|b — c|| cos 6.
Rearranging gives
lla—cl* —[la=b]|* = =[[b—c]|*+2(la —cl|[b—c]| cos 6.

Since 0 lies in [7/2,37/2], the cosine term must be non-
positive, immediately yielding the claim. O

Lemma 2. The change in potential satisfies

QS(CL, C) - ¢(a» b) < 2¢(b7 C) + ¢(a7 b)

forall a,b,c € R%.

Proof. We apply the Law of Cosines again:
lla — ¢l = la = bl* = [|b— cl|* — 2[la — bl|[|b - ¢|| cos §

where 6 is the angle between the vectors ¢ — b and b — c.
The second term on the right is at most 2|la — b||||b — ¢||;
applying the AM-GM inequality to this expression gives
the claim. O

Lemma 3. At all timesteps t, the potential satisfies

4 4
Oz, 7)) < ﬂHt + th*
m m

Proof. We have

Oz, xf) = nllee—2f|
< nllze = vell + [y — vel))?
< 2nllwy — vl + 20|z — ol
4 4
< g+ hy
m m

The first inequality is just the triangle inequality; the sec-
ond follows from the AM-GM inequality; and in the last
step we used the fact that f;(z) > 2|z — v O

Now we return to the proof of Theorem 1. Note that it suf-
fices to show that OBD is constant competitive in the case
where minimum value of each cost function is zero, since
otherwise the competitive ratio can only improve. In this
case, we always have M; = S H,; since H; shrinks to zero
as we move towards the minimizer while M; increases.

Proof. To bound the cost charged to OBD in each step, we
first consider two cases.

Casel: H; < H}

This case is easy; the cost charged to OBD is

4 4
Hi+ M+ 2¢ < Hy+ M+~ Hy+—H}

8
< <1+B+”>H;
m

Here in the first inequality we threw away the negative po-
tential term and used Lemma 3. In the second inequality
we used the fact that M; = SH; and the inequality defin-
ing the case.

A

Case 2: H, > H}

This is the hard case. Unlike in the previous case, we can-
not directly bound the cost charged to OBD in terms of the
offline cost, since H; is less than H;. Our strategy will be
to show that the change in potential was negative, offsetting
the hitting and movement costs incurred by OBD.

Since H; < Hy, the offline point x; must lie strictly in the
interior of Ky, where K, is the H;-level set of f;. Notice
that the angle # made between the line segments T;_1x¢
and z.x; must be obtuse, since z; was the projection onto
the level set, and x; lies strictly on the opposite side of the
supporting hyperplane tangent to K; at z; (see Figure 1).
We have
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Figure 1. An illustration of the situation arising in Case 2. The
ellipse represents the level set K of f: which OBD has selected;
x; is the projection of x;_1 onto this level set. The offline point
a; must lie strictly inside the level set, since H;" < H;. The angle
6 must be obtuse, since x; lies on the other side of the supporting
hyperplane at x;, shown by the dotted line.

Hi+ M +A¢ = Hy+ M+ (¢(xy, 27) — p(z-1,27))

+ (dj('rt—hm:) - ¢(xt—17 xr—l))

< Hy+ My — ¢(xy,20-1)
+2¢(ay, xi_q) + ¢(we—1,2¢_1)

= Ht + Mt — T]Mt + 2?’]Mt*
+¢($t_1,1‘2<_1)

<

1
<1+ﬂ—n)Mt+2nM§‘

4 4
+ g, D
m m

In the first inequality we use Lemma 1 to bound the first
change in potential and Lemma 2 to bound the second. In
the second inequality we apply the fact that M, = 5 H; and
Lemma 3.

Bounding the competitive ratio

We have now bounded the cost charged to OBD in each of
the two cases. Putting both cases together, we see that we
always have

8
Hy+ M, + Ap < (1+ﬁ+ U)Ht*+2th*

m

4 4
+=LHy oy + LH
m m

where we assume that 5, were picked so thatn > 1 4 %
Adding up across all timesteps and collecting terms, we

have:
T

T § T 477
+> oM+ —Hy
t=1 t=1

d 12
S Hi+M; < (1+B+mn>H?
t=1

By the balance condition, H; = ﬁ

mediately obtain

(Ht + Mt) We im-

ALG < max((l—l—ﬁ—l—m) ,277>OPT
m

4n
— ALG
+m(1 +f)

Let us assume that that 3, ny are picked so that méiz-ﬁ) <1
rearranging gives

ALG < max ((1+ 8 + 1%’) ,21)
orr )

Now we seek to minimize the competitive ratio by appro-
priately picking /3, , subject to the constraints. Notice that
the competitive ratio is always increasing in 7. Since we
know that we must have n > 1 + % this must be the op-
timal value of 1. We can hence immediately rewrite our
optimization problem purely in terms of /3:

- max ((1 +B8+ 21+ %) ,2(1+ %))

1
B> 1—m—B

Note that this proves that OBD is competitive for all 5 >
%. Instead of trying to find the exact optimal solution,
we instead select a simple choice of 3 which gives a small
competitive ratio. Setting 5 = 2 + % immediately gives
an upper bound on the competitive ratio of 3 + O(1/m) as
claimed. O

Proof of Corollary 2
Proof. Define

¢
Yt = Z Buj,
i=1

Notice that

t
UVt = — E w; .
i=1

Ty =Yg — Vg, u = By — 1),

so the LQR problem can be rewritten as

T
. 1 1
min § ~(Ye—v)' Qu(ye—ve)+5 (We—y1-1)' Z (Y —yi-1)
Y1 YT 2 2
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where

Now define

z = RiB™ 'y,

Z = (B 'YRB™!

15
St = R2B 1’Ut.

The optimization problem becomes

T

. 1 1
min. z_; §(Zt = 5¢) Py — s¢) + §||Zt — z-13

where

P, = (BR™%)@QBR"*

This is just a special case of the SOCO problem. Notice
that the costs are strongly convex with parameter Ay, (P ),
which is bounded below by

Amin B2\
)\maw (R)

which in light of Theorem 1 proves the claim.
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